Abstract
This paper answers one rather particular question: how to perform a proof of uniform interpolation property in deep inference calculi for modal logics. We show how to perform a proof of uniform interpolation property in deep inference calculus for the basic modal logic K via forgetting a variable in a certain normal form constructed by backward proof search. For that purpose we modify the framework of deep-inference calculus using a cover modality on the meta level to structure deep sequents.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bílková, M.: Interpolation in Modal Logic. PhD thesis, Charles University in Prague (2006)
Bílková, M.: Uniform interpolation and propositional quantifiers in modal logics. Studia Logica 85(1), 1–31 (2007)
Bílková, M., Palmigiano, A., Venema, Y.: Proof systems for the coalgebraic cover modality. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic, vol. 7, pp. 1–21. College Publications (2008)
Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 107–120. College Publications (2006)
Brünnler, K., Straßburger, L.: Modular Sequent Systems for Modal Logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 152–166. Springer, Heidelberg (2009)
Brünnler, K.: Deep Sequent Systems for Modal Logic. Archive for Mathematical Logic 48, 551–577 (2009)
ten Cate, B., et al.: Definitorially complete description logics. In: [8], pp. 79–89 (2006)
ten Cate, B., Zeevat, H. (eds.): Logic, Language, and Computation, 6th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2005, Batumi, Georgia, September 12-16, 2005. Revised Selected Papers, Batumi, Georgia, September 12-16. LNCS, vol. 4363, pp. 973–978. Springer, Heidelberg (2007) ISBN 978-3-540-75143-4
D’Agostino, G.: Uniform interpolation, bisimulation quantifiers, and fixed points. In: [8], pp. 96–116 (2005)
Ghilardi, S., Zawadovski, M.: Undefinability of propositional quantifiers in the modal system S4. Studia Logica 55, 259–271 (1995)
Guglielmi, A.: Deep inference and the calculus of structures (2008), Web site at http://alessio.guglielmi.name/res/cos
Hájek, P., Wiedermann, J. (eds.): MFCS 1995. LNCS, vol. 969, pp. 3–540. Springer, Heidelberg (1995) ISBN 3-540-60246-1
Heuerding, A.: Sequent Calculi for Proof Search in Some Modal Logics. PhD thesis, University of Bern, Switzerland (1998)
Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. Tableaux, 210–225 (1996)
Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results. In: [21], pp. 552–562 (1995)
Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34(5-6), 507–544 (2005)
Palmigiano, A., Venema, Y.: Nabla algebras and chu spaces. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 394–408. Springer, Heidelberg (2007)
Pitts, A.: On an interpretation of second order quantification in first order intuitionistic propositional logic. The Journal of Symbolic Logic 57, 33–52 (1992)
Venema, Y.: Algebras and coalgebras. In: van Benthem, J., Blackburn, P., Wolter, F. (eds.) Handbook of Modal Logic, Elsevier, Amsterdam (2006)
Visser, A.: Bisimulations, model descriptions and propositional quantifiers. In: Logic Group Preprint Series, vol. 161. Utrecht University (1996)
Wansing, H.: Sequent proof systems for modal logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8, Kluwer Academic Publishers, Dordrecht (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bílková, M. (2011). A Note on Uniform Interpolation Proofs in Modal Deep Inference Calculi. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds) Logic, Language, and Computation. TbiLLC 2009. Lecture Notes in Computer Science(), vol 6618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22303-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-22303-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22302-0
Online ISBN: 978-3-642-22303-7
eBook Packages: Computer ScienceComputer Science (R0)