Skip to main content

Efficient Design and Inference in Distributed Bayesian Networks: An Overview

  • Conference paper
Logic, Language, and Computation (TbiLLC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6618))

Included in the following conference series:

  • 714 Accesses

Abstract

This paper discusses an approach to distributed Bayesian modeling and inference, which is relevant for an important class of contemporary real world situation assessment applications. By explicitly considering the locality of causal relations, the presented approach (i) supports coherent distributed inference based on large amounts of very heterogeneous information, (ii) supports a systematic validation of distributed models and (iii) can be robust with respect to the modeling deviations of parameters. The challenges of distributed situation assessment applications and their solutions are explained with the help of a real world example from the gas monitoring domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications (1991)

    Google Scholar 

  2. Dawid, A.P.: Conditional independence in statistical theory. Journal of the Royal Statistical Society. Series B (Methodological) 41, 1–31 (1979)

    MathSciNet  MATH  Google Scholar 

  3. de Oude, P.: Modular Bayesian Networks: Inference, Verification and Model Inaccuracies. PhD thesis, University of Amsterdam (2010)

    Google Scholar 

  4. de Oude, P., Pavlin, G.: Constraint-based approach to discovery of inter module dependencies in modular bayesian networks. In: The 22nd International FLAIRS Conference, Sanibel Island, Florida, USA (2009)

    Google Scholar 

  5. de Oude, P., Pavlin, G.: Efficient distributed bayesian reasoning via targeted instantiation of variables. In: IEEE/WIC/ACM International Conference on Intelligent Agent Technology (2009)

    Google Scholar 

  6. de Oude, P., Pavlin, G., de Groot, J.: Robust bayesian detection: a case study. In: 13th International Conference on Information Fusion, Edinburgh, UK (2010)

    Google Scholar 

  7. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)

    Book  MATH  Google Scholar 

  8. Koller, D., Pfeffer, A.: Object-oriented bayesian networks. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 302–313 (1997)

    Google Scholar 

  9. Laskey, K.B., Mahoney, S.: Network fragments: Representing knowledge for constructing probabilistic models. In: Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 334–334. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  10. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. pp. 415–448 (1990)

    Google Scholar 

  11. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  12. Paskin, M., Guestrin, C.: Robust probabilistic inference in distributed systems. In: Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2004), Banff, Canada, pp. 436–445. AUAI Press (2004)

    Google Scholar 

  13. Pavlin, G., de Oude, P., Maris, M., Nunnink, J., Hood, T.: A multi agent systems approach to distributed bayesian information fusion. Internation Journal on Multi-sensor Multi-source Information Fusion (2010)

    Google Scholar 

  14. Pavlin, G., Groen, F.C.A., de Oude, P.: A Distributed Approach to Gas Detection and Source Localization Using Heterogeneous Information. In: Interactive Collaborative Information Systems. SCI, vol. 281. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Pavlin, G., Nunnink, J.: Inference meta models: Towards robust information fusion with bayesian networks. In: The Ninth International Conference on Information Fusion, Florence, Italy (2006)

    Google Scholar 

  16. Pearl, J.: Causality: Models Reasoning and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  18. Russell, S., Norvig, P.: Artificial Intelligence - A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  19. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. The MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Xiang, Y.: Probabilistic Reasoning in Multiagent Systems: A Graphical Models Approach. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Oude, P., Groen, F.C.A., Pavlin, G. (2011). Efficient Design and Inference in Distributed Bayesian Networks: An Overview. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds) Logic, Language, and Computation. TbiLLC 2009. Lecture Notes in Computer Science(), vol 6618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22303-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22303-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22302-0

  • Online ISBN: 978-3-642-22303-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics