Skip to main content

Languages vs. ω-Languages in Regular Infinite Games

  • Conference paper
Developments in Language Theory (DLT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6795))

Included in the following conference series:

  • 624 Accesses

Abstract

Infinite games are studied in a format where two players, called Player 1 and Player 2, generate a play by building up an ω-word as they choose letters in turn. A game is specified by the ω-language which contains the plays won by Player 2. We analyze ω-languages generated from certain classes \({\cal K}\) of regular languages of finite words (called *-languages), using natural transformations of *-languages into ω-languages. Winning strategies for infinite games can be represented again in terms of *-languages. Continuing work of Selivanov (2007) and Rabinovich et al. (2007), we analyze how these “strategy *-languages” are related to the original language class \({\cal K}\). In contrast to that work, we exhibit classes \({\cal K}\) where strategy representations strictly exceed \({\cal K}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Transactions of the American Mathematical Society 138, 295–311 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. Journal of Computer and System Sciences 5, 1–16 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 2nd edn. Addison-Wesley series in computer science. Addison-Wesley-Longman (2001)

    Google Scholar 

  5. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  6. Pin, J.-É.: Varieties of Formal Languages. In: North Oxford, London (1986)

    Google Scholar 

  7. Pin, J.-É.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 76–87. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Rabinovich, A., Thomas, W.: Logical refinements of church’s problem. In: Duparc, J., Henzinger, T. (eds.) CSL 2007. LNCS, vol. 4646, pp. 69–83. Springer, Heidelberg (2007)

    Google Scholar 

  9. Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 399–410. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. International Journal of Foundations of Computer Science 19(3), 649–675 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Simon, I.: Hierarchies of events with dot-depth one. PhD thesis, University of Waterloo (1972)

    Google Scholar 

  12. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

    Google Scholar 

  13. Staiger, L., Wagner, K.W.: Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektronische Informationsverarbeitung und Kybernetik 10(7), 379–392 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Stern, J.: Characterizations of some classes of regular events. Theoretical Computer Science 35, 17–42 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser Verlag, Basel (1994)

    Google Scholar 

  16. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and System Sciences 25(3), 360–376 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York (1997)

    Chapter  Google Scholar 

  18. Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 635–655. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaturvedi, N., Olschewski, J., Thomas, W. (2011). Languages vs. ω-Languages in Regular Infinite Games. In: Mauri, G., Leporati, A. (eds) Developments in Language Theory. DLT 2011. Lecture Notes in Computer Science, vol 6795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22321-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22321-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22320-4

  • Online ISBN: 978-3-642-22321-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics