Abstract
Modern data are often high dimensional and dynamic. Subspace clustering aims at finding the clusters and the dimensions of the high dimensional feature space where these clusters exist. So far, the subspace clustering methods are mainly static and cannot address the dynamic nature of modern data. In this paper, we propose a dynamic subspace clustering method, which extends the density based projected clustering algorithm PreDeCon for dynamic data. The proposed method efficiently examines only those clusters that might be affected due to the population update. Both single and batch updates are considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C.: On change diagnosis in evolving data streams. IEEE TKDE 17(5), 587–600 (2005)
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proc. VLDB (2003)
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: Proc. VLDB (2004)
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. SIGMOD (1998)
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. SIGMOD (1999)
Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with local subspace preferences. In: Proc. ICDM (2004)
Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proc. SDM (2006)
Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SICOMP 33(6), 1417–1440 (2004)
Chen, C.Y., Hwang, S.C., Oyang, Y.J.: An incremental hierarchical data clustering algorithm based on gravity theory. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, p. 237. Springer, Heidelberg (2002)
Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining in a data warehousing environment. In: Proc. VLDB (1998)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. KDD (1996)
Ganti, V., Gehrke, J., Ramakrishnan, R.: DEMON: Mining and monitoring evolving data. IEEE TKDE 13(1), 50–63 (2001)
Gao, J., Li, J., Zhang, Z., Tan, P.N.: An incremental data stream clustering algorithm based on dense units detection. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 420–425. Springer, Heidelberg (2005)
Garofalakis, M., Gehrke, J., Rastogi, R.: Querying and mining data streams: you only get one look. A tutorial. In: Proc. SIGMOD (2002)
Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: Theory and practice. IEEE TKDE 15(3), 515–528 (2003)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM CSUR 31(3), 264–323 (1999)
Kriegel, H.P., Kröger, P., Gotlibovich, I.: Incremental OPTICS: efficient computation of updates in a hierarchical cluster ordering. In: Proc. DaWaK (2003)
Kriegel, H.P., Kröger, P., Ntoutsi, I., Zimek, A.: Towards subspace clustering on dynamic data: an incremental version of PreDeCon. In: Stream KDD 2010 (2010)
Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. IEEE TKDD 3(1), 1–58 (2009)
Liebl, B., Nennstiel-Ratzel, U., von Kries, R., Fingerhut, R., Olgemöller, B., Zapf, A., Roscher, A.A.: Very high compliance in an expanded MS-MS-based newborn screening program despite written parental consent. Preventive Medicine 34(2), 127–131 (2002)
Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC: modeling and monitoring cluster transitions. In: Proc. KDD (2006)
Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for very large databases. In: Proc. SIGMOD, pp. 103–114 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kriegel, HP., Kröger, P., Ntoutsi, I., Zimek, A. (2011). Density Based Subspace Clustering over Dynamic Data. In: Bayard Cushing, J., French, J., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2011. Lecture Notes in Computer Science, vol 6809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22351-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-22351-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22350-1
Online ISBN: 978-3-642-22351-8
eBook Packages: Computer ScienceComputer Science (R0)