Abstract
The past decade has seen an explosion in the number and types of environmental sensors deployed, many of which provide a continuous stream of observations. Each individual observation consists of one or more sensor measurements, a geographic location, and a time. With billions of historical observations stored in diverse databases and in thousands of datasets, scientists have difficulty finding relevant observations. We present an approach that creates consistent geospatial-temporal metadata from large repositories of diverse data by blending curated and automated extracts. We describe a novel query method over this metadata that returns ranked search results to a query with geospatial and temporal search criteria. Lastly, we present a prototype that demonstrates the utility of these ideas in the context of an ocean and coastalmargin observatory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Geospatial One Stop (GOS), http://gos2.geodata.gov/wps/portal/gos
Global Change Master Directory Web Site, http://gcmd.nasa.gov/
The Google Maps Javascript API V3, http://code.google.com/apis/maps/documentation/javascript/
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)
Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)
Egenhofer, M.J.: Toward the semantic geospatial web. In: Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, pp. 1–4 (2002)
Evans, M.P.: Analysing Google rankings through search engine optimization data. Internet Research 17(1), 21–37 (2007)
Goodchild, M.F., Zhou, J.: Finding geographic information: Collection-level metadata. GeoInformatica 7(2), 95–112 (2003)
Goodchild, M.F.: The Alexandria Digital Library Project: Review, Assessment, and Prospects (2004), http://www.dlib.org/dlib/may04/goodchild/05goodchild.html
Goodchild, M.F., et al.: Sharing Geographic Information: An Assessment of the Geospatial One-Stop. Annals of the AAG 97(2), 250–266 (2007)
Grossner, K.E., et al.: Defining a digital earth system. Transactions in GIS 12(1), 145–160 (2008)
Herring, J.R. (ed.): OpenGIS® Implementation Standard for Geographic information - Simple feature access - Part 1: Common architecture (2010)
Hey, T., Trefethen, A.: e-Science and its implications. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361(1809), 1809 (2003)
Hey, T., Trefethen, A.E.: The Data Deluge: An e-Science Perspective. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the Global Infrastructure a Reality, pp. 809–824. John Wiley & Sons, Ltd., Chichester (2003)
Hill, L.L., et al.: Collection metadata solutions for digital library applications. J. of the American Soc. for Information Science 50(13), 1169–1181 (1999)
Howe, B., et al.: Scientific Mashups: Runtime-Configurable Data Product Ensembles. Scientific and Statistical Database Management, 19–36 (2009)
Kobayashi, M., Takeda, K.: Information retrieval on the web. ACM Comput. Surv. 32, 144–173 (2000)
Lewandowski, D.: Web searching, search engines and Information Retrieval. Information Services and Use 25(3), 137–147 (2005)
Lord, P., Macdonald, A.: e-Science Curation Report (2003), http://www.jisc.ac.uk/uploaded_documents/e-ScienceReportFinal.pdf
Manning, C.D., et al.: An introduction to information retrieval. Cambridge University Press, Cambridge (2008)
Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information retrieval. Journal of the ACM (JACM) 7(3), 216–244 (1960)
Miller, C.C.: A Beast in the Field: The Google Maps mashup as GIS/2. Cartographica 41(3), 187–199 (2006)
Miller, H.J., Wentz, E.A.: Representation and Spatial Analysis in Geographic Information Systems. Annals of the AAG 93(3), 574–594 (2003)
Montello, D.: The geometry of environmental knowledge. Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, 136–152 (1992)
Perlman, E., et al.: Data Exploration of Turbulence Simulations Using a Database Cluster. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp. 1–11 (2007)
Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: Proc. of VLDB, p. 762 (2006)
Stolte, E., Alonso, G.: Efficient exploration of large scientific databases. In: Proc. of VLDB, p. 633 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Megler, V.M., Maier, D. (2011). Finding Haystacks with Needles: Ranked Search for Data Using Geospatial and Temporal Characteristics. In: Bayard Cushing, J., French, J., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2011. Lecture Notes in Computer Science, vol 6809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22351-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-22351-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22350-1
Online ISBN: 978-3-642-22351-8
eBook Packages: Computer ScienceComputer Science (R0)