Abstract
Cardinality estimation is crucial for query optimization. The optimizer uses cardinality estimates to compute the query-plan costs. Histograms are one of the most popular data structures used for cardinality estimation [2]. Because histograms compress the data set, the cardinality estimates issued are not exact.We model these estimates as random variables, and denote the cardinality of query q by card(q).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multidimensional workload-aware histogram. SIGMOD Record (2001)
Ioannidis, Y.: The history of histograms (abridged). In: VLDB (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khachatryan, A., Böhm, K. (2011). Accurate Cost Estimation Using Distribution-Based Cardinality Estimates for Multi-dimensional Queries. In: Bayard Cushing, J., French, J., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2011. Lecture Notes in Computer Science, vol 6809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22351-8_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-22351-8_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22350-1
Online ISBN: 978-3-642-22351-8
eBook Packages: Computer ScienceComputer Science (R0)