Skip to main content

On the Definability of Simulability and Bisimilarity by Finite Epistemic Models

  • Conference paper
Computational Logic in Multi-Agent Systems (CLIMA 2011)

Abstract

We explore when finite epistemic models are definable up to simulability or bisimulation, either over the basic multi-agent epistemic language \(\mathsf L\) or over its extension \(\mathsf L^C\) with common knowledge operators. Our negative results are that: simulability is not definable in general in \(\mathsf L^C\), and finite epistemic states (i.e., pointed models) are not definable up to bisimulation in \(\mathsf L\). Our positive results are that: finite epistemic states are definable up to bisimulation by model validity of \(\mathsf L\)-formulas, and there is a class of epistemic models we call well-multifounded for which simulability is definable over \(\mathsf L\). From our method it also follows that finite epistemic models (i.e., not-pointed models) are definable up to bisimulation using model validity in \(\mathsf L\). Our results may prove useful for the logical specification of multi-agent systems, as it provides justification for the ubiquitous but often unjustified claims of the form ‘suppose action a can only be performed in state s’: we show when such preconditions exist. An application are characteristic formulae for interpreted systems. They have a special form wherein factual knowledge, positive knowledge, and ignorance can be separated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes, vol. 14. CSLI Publications, Stanford (1988)

    MATH  Google Scholar 

  2. Barwise, J., Moss, L.S.: Vicious Circles. CSLI Publications, Stanford (1996)

    MATH  Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  4. Browne, M., Clarke, E., Grümberg, O.: Characterizing Kripke structures in temporal logic. In: Ehrig, H., Levi, G., Montanari, U., Kowalski, R. (eds.) CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 256–270. Springer, Heidelberg (1987)

    Google Scholar 

  5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  6. Fernández-Duque, D.: On the modal definability of simulability by finite transitive models. In: Studia Logica (forthcoming, 2011)

    Google Scholar 

  7. Lomuscio, A.R., Ryan, M.D.: On the relation between interpreted systems and kripke models. In: Wobcke, W.R., Pagnucco, M., Zhang, C. (eds.) Agents and Multi-Agent Systems Formalisms, Methodologies, and Applications. LNCS (LNAI), vol. 1441, pp. 46–59. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge Tracts in Theoretical Computer Science, vol. 41. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  9. van Benthem, J.: Dynamic odds and ends. ILLC Technical Report ML (1998)

    Google Scholar 

  10. van Benthem, J.: ‘One is a lonely number’: on the logic of communication. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002. Lecture Notes in Logic, vol. 27. Association for Symbolic Logic (2002)

    Google Scholar 

  11. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  12. van Ditmarsch, H., van der Hoek, W., Kooi, B.P.: Descriptions of game states. In: Mints, G., Muskens, R. (eds.) Logic, Games, and Constructive Sets. CSLI Lecture Notes, vol. 161, pp. 43–58. CSLI Publications, Stanford (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Ditmarsch, H., Fernández-Duque, D., van der Hoek, W. (2011). On the Definability of Simulability and Bisimilarity by Finite Epistemic Models. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds) Computational Logic in Multi-Agent Systems. CLIMA 2011. Lecture Notes in Computer Science(), vol 6814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22359-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22359-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22358-7

  • Online ISBN: 978-3-642-22359-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics