Skip to main content

Implementation of a Computational Model of the Innate Immune System

  • Conference paper
Artificial Immune Systems (ICARIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6825))

Included in the following conference series:

Abstract

In the last few years there has been an increasing interest in mathematical and computational modelling of the human immune system (HIS). Computational models of the HIS dynamics may contribute to a better understanding of the complex phenomena associate to the immune system, and support the development of new drugs and therapies for different diseases. However, the modelling of the HIS is an extremely hard task that demands huge amount of work to be performed by multidisciplinary teams. In this scenario, the objective of this work is to model the dynamics of some cells and molecules of the HIS during an immune response to lipopolysaccharide (LPS) in a section of the tissue. The LPS constitutes the cellular wall of Gram-negative bacteria, and it is a highly immunogenic molecule, which means that it has a remarkable capacity to elicit strong immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoare, T., Miller, R.: Grand Challenges in Computing Research. British Computer Society (2004)

    Google Scholar 

  2. Medeiros, C.B.: Grand research challenges in computer science in brazil. Computer 41, 59–65 (2008)

    Article  Google Scholar 

  3. Su, B., Zhou, W., Dorman, K.S., Jones, D.E.: Mathematical modelling of immune response in tissues. Computational and Mathematical Methods in Medicine: An Interdisciplinary Journal of Mathematical, Theoretical and Clinical Aspects of Medicine 10, 1748–6718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Janeway, C., Murphy, K.P., Travers, P., Walport, M., Janeway, C.: Immunobiology, 5th edn. Garland Science, New York (2001)

    Google Scholar 

  5. Zhang, B., Hirahashi, J., Cullere, X., Mayadas, T.N.: Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis. The Journal of Biological Chemistry 278, 28443–28454 (2003)

    Article  Google Scholar 

  6. Goutelle, S., Maurin, M., Rougier, F., Barbaut, X., Bourguignon, L., Ducher, M., Maire, P.: The hill equation: a review of its capabilities in pharmacological modelling. Fundamental & Clinical Pharmacology 22(6), 633–648 (2008)

    Article  Google Scholar 

  7. Wagner, J.G.: Kinetics of pharmacologic response i. proposed relationships between response and drug concentration in the intact animal and man. Journal of Theoretical Biology 20(2), 173–201 (1968)

    Article  Google Scholar 

  8. Byrne, H.M., Cave, G., McElwain, D.L.S.: The effect of chemotaxis and chemokinesis on leukocyte locomotion: A new interpretation of experimental results. Mathematical Medicine and Biology 15(3), 235–256 (1998)

    Article  MATH  Google Scholar 

  9. di Carlo, E., Iezzi, M., Pannellini, T., Zaccardi, F., Modesti, A., Forni, G., Musian, P.: Neutrophils in anti-cancer immunological strategies: Old players in new games. Journal of Hematotherapy & Stem Cell Research 10, 739–748 (2001)

    Article  Google Scholar 

  10. Price, T., Ochs, H., Gershoni-Baruch, R., Harlan, J., Etzioni, A.: In vivo neutrophil and lymphocyte function studies in a patient with leukocyte adhesion deficiency type ii. Blood 84(5), 1635–1639 (1994)

    Google Scholar 

  11. Felder, S., Kam, Z.: Human neutrophil motility: Time-dependent three-dimensional shape and granule diffusion. Cell Motility and the Cytoskeleton 28(4), 285–302 (1994)

    Article  Google Scholar 

  12. Chettibi, S., Lawrence, A., Young, J., Lawrence, P., Stevenson, R.: Dispersive locomotion of human neutrophils in response to a steroid-induced factor from monocytes. J. Cell. Sci. 107(11), 3173–3181 (1994)

    Google Scholar 

  13. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  14. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135, 260–278 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leonard, B.P.: Simple high-accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids 8(10), 1291–1318 (1988)

    Article  MATH  Google Scholar 

  16. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes,ii. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  Google Scholar 

  17. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics 27(1), 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. Math. Mod. Num. Analysis 37, 617–630 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filbet, F.: A finite volume scheme for the patlak–keller–segel chemotaxis model. Numerische Mathematik 104, 457–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hafez, M.M., Chattot, J.J.: Innovative Methods for Numerical Solution of Partial Differential Equations. World Scientific Publishing Company, Singapore (2002)

    MATH  Google Scholar 

  21. Pigozzo, A.B., Lobosco, M., dos Santos, R.W.: Parallel implementation of a computational model of the his using openmp and mpi. In: International Symposium on Computer Architecture and High Performance Computing Workshops, pp. 67–72 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pigozzo, A.B., Macedo, G.C., dos Santos, R.W., Lobosco, M. (2011). Implementation of a Computational Model of the Innate Immune System. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22371-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22370-9

  • Online ISBN: 978-3-642-22371-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics