Skip to main content

Population-Based Artificial Immune System Clustering Algorithm

  • Conference paper
Artificial Immune Systems (ICARIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6825))

Included in the following conference series:

Abstract

Artificial immune systems inspired by humoral-mediated immunity use hyper mutation to simulate the way that natural immune systems refine their B cells and antibodies in response to pathogens in a process called affinity maturation. Such hyper mutation is typically performed on individual computational antibodies and B cells, and has been shown to be successful in a variety of machine learning tasks, including supervised and unsupervised learning. This paper proposes a population-based approach to affinity maturation in the problem domain of clustering. Previous work in humoral-mediated immune systems (HAIS), while using concepts of immunoglobulins, antibodies and B cells, has not investigated the use of population-based evolutionary approaches to evolving better antibodies with successively greater affinities to pathogens. The population-based approach described here is a two step algorithm, where the number of clusters is obtained in the first step using HAIS and then in step two a population-based approach is used to further enhance the cluster quality. Convergence in the fitness of populations is achieved through transferring memory cells from one generation to another. The experiments are performed on benchmarked real world datasets and demonstrate the feasibility of the proposed approach. Additional results also show the effectiveness of the crossover operator at the population level. The outcome is an artificial immune system approach to clustering that uses both mutation within antibodies and crossover between members of B cells to achieve effective clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marinakis, Y., Marinaki, M., Matsatsinis, N.: A Stochastic nature inspired metaheuristic for clustering analysis. Int. J. Business Intelligence and Data Mining 3, 30–44 (2008)

    Article  Google Scholar 

  2. Kao, Y., Cheng, K.: An ACO-based clustering algorithm, vol. 4150, pp. 340–347. Springer, Heidelberg (2006)

    Google Scholar 

  3. Premalatha, K., Natarajan, A.M.: A New Approach for Data Clustering Based on PSO with Local Search. Computer and Information Science 1(4), 139–145 (2008)

    Google Scholar 

  4. Sheikh, R.H., Jaiswal, A.N., Raghuwanshi, N.M.: Genetic Algorithm Based Clustering: A Survey. In: First International Conference on Emerging Trends in Engineering and Technology, pp. 314–319 (2008)

    Google Scholar 

  5. Ahmad, W., Narayanan, A.: Humoral-mediated Clustering. In: Proceedings of the IEEE 5th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2010), pp. 1471–1481 (2010)

    Google Scholar 

  6. Hart, E., Timmis, J.: Application area of AIS: The Past, The Present and the Future. Applied Soft. Computing 8(1) (2008)

    Google Scholar 

  7. Potter, M.A., DeJong, K.A.: The co-evolution of antibodies for concept learning. In: Fifth International Conference on Parallel Problem Solving From Nature, pp. 530–539 (1998)

    Google Scholar 

  8. Ahmadi, M.R., Maleki, D.: A co-evolutionary immune system framework in a grid environment for enterprise network security. In: SSI, pp. 1136–1143 (2006)

    Google Scholar 

  9. Hajela, P., Yoo, J., Lee, J.: Ga Based Simulation Of Immune Networks Applications In Structural Optimization. Engineering Optimization 29(1), 131–149 (1997)

    Article  Google Scholar 

  10. Louis, S.J., McDonnell, J.: Learning with case-injected genetic algorithms. IEEE Transactions on Evolutionary Computation 8(4), 316–328 (2004)

    Article  Google Scholar 

  11. Forrest, S., Hofmeyer, S.: Immunology as information processing. In: Segel, L., Cohen, I. (eds.) Design Principles for Immune System and Other Distributed Autonomous Systems, p. 361. Oxford University Press, Oxford (2000)

    Google Scholar 

  12. Hunt, J.E., Cook, D.E.: Learning using an artificial immune system. Journal of Network and Computer Applications 19, 189–212 (1996)

    Article  Google Scholar 

  13. Timmis, J., Knight, T.: An Immmunological Approach to Data Mining. In: Proceedings of IEEE International Conference on Data Mining, vol. 1, pp. 297–304 (2001)

    Google Scholar 

  14. Castro, L.N.De., Zuben, J.: The Clonal Selection Algorithm with Engineering Applications. In: Workshop Proceedings of GECCO, Workshop on Artificial Immune Systems and Their Applications, Las Vegas, pp. 36–37 (2000)

    Google Scholar 

  15. Watkins, A., Timmis, J., Boggess, L.: Artificial Immune Recognition System (AIRS): An Immune-Inspired Supervised Learning Algorithm. Genetic Programming and Evolvable Machines 5(3), 291 (2004)

    Article  Google Scholar 

  16. Younsi, R., Wang, W.: A New Artificial Immune System Algorithm for Clustering. Lecture Notes in Computer Science, p. 58 (2004)

    Google Scholar 

  17. Castro, L.N.D., Zuben, F.J.V.: AiNet: An Artificial Immune Network for Data Analysis. Data Mining: A Heuristic Approach 1, 231–260 (2002)

    Google Scholar 

  18. Khaled, A., Abdul-Kader, H.M., Ismail, N.A.: Artificial Immune Clonal Selection Algorithm: A Comparative Study of CLONALG, opt-IA and BCA with Numerical Optimization Problems. International Journal of Computer Science and Network Security 10(4), 24–30 (2010)

    Google Scholar 

  19. Ahmad, W., Narayanan, A.: Outlier Detection using Humoral-mediated Clustering (HAIS). In: Proceedings of NaBIC 2010 (IEEE World Congress on Nature and Biologically Inspired Computing), pp. 45–52 (2010)

    Google Scholar 

  20. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. Journal of Intelligent Information Systems 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  21. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: part I. SIGMOD Record 31(2), 40–45 (2002)

    Article  Google Scholar 

  22. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: part II. SIGMOD Record 31(3), 19–27 (2002)

    Article  Google Scholar 

  23. Tan, P.N., Steinbach, M., Kumar, V.: Cluster Analysis: basic concepts and algorithms: Introduction to Data Mining, pp. 487–568. Addison-Wesley, Reading (2006)

    Google Scholar 

  24. Bezdek, J.C., Pal, N.R.: Some New Indexes of Cluster Validity. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 28, 301–315 (1998)

    Article  Google Scholar 

  25. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmad, W., Narayanan, A. (2011). Population-Based Artificial Immune System Clustering Algorithm. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22371-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22370-9

  • Online ISBN: 978-3-642-22371-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics