Abstract
At FSE 2009, Albrecht et al. proposed a new cryptanalytic method that combines algebraic and differential cryptanalysis. They introduced three new attacks, namely Attack A, Attack B and Attack C. For Attack A, they explain that the time complexity is difficult to determine. The goal of Attacks B and C is to filter out wrong pairs and then recover the key. In this paper, we show that Attack C does not provide an advantage over differential cryptanalysis for typical block ciphers, because it cannot be used to filter out any wrong pairs that satisfy the ciphertext differences. Furthermore, we explain why Attack B provides no advantage over differential cryptanalysis for PRESENT. We verify our results for PRESENT experimentally, using both PolyBoRi and MiniSat. Our work helps to understand which equations are important in the differential-algebraic attack. Based on our findings, we present two new differential-algebraic attacks. Using the first method, our attack on 15-round PRESENT-80 requires 259 chosen plaintexts and has a worst-case time complexity of 273.79 equivalent encryptions. Our new attack on 14-round PRESENT-128 requires 255 chosen plaintexts and has a worst-case time complexity of 2112.83 equivalent encryptions. Although these attacks have a higher time complexity than the differential attacks, their data complexity is lower.
This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by the European Commission through the ICT program under contract ICT-2007-216676 ECRYPT II.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albrecht, M.: Tools for the algebraic cryptanalysis of cryptographic primitives., http://www.ecrypt.eu.org/tools/tools-for-algebraic-cryptanalysis
Albrecht, M.: Algorithmic Algebraic Techniques and their Application to Block Cipher Cryptanalysis. PhD thesis, Royal Holloway, University of London (2010)
Albrecht, M., Cid, C.: Algebraic Techniques in Differential Cryptanalysis. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg (2009)
Albrecht, M., Cid, C., Dullien, T., Faugère, J.-C., Perret, L.: Algebraic precomputations in differential and integral cryptanalysis. In: INSCRYPT 2010, p. 18 (2010) (to appear)
Bard, G.V.: Algebraic Cryptanalysis. Security and Cryptology, vol. XXXIV. Springer, Heidelberg (2009)
Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology 4(1), 3–72 (1991)
Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-Round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993)
Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg (2011)
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)
Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)
Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009)
Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)
Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Boneh (ed.) [10], pp. 176–194
Courtois, N., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007)
Courtois, N., Debraize, B.: Specific S-Box Criteria in Algebraic Attacks on Block Ciphers with Several Known Plaintexts. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS, vol. 4945, pp. 100–113. Springer, Heidelberg (2008)
Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)
Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)
Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh (ed.) [10], pp. 44–60
Faugère, J.-C., Perret, L., Spaenlehauer, P.-J.: Algebraic-Differential Cryptanalysis of DES. In: Western European Workshop on Research in Cryptology - WEWoRC 2009, pp. 1–5 (2009)
Gong, Z., Hartel, P., Nikova, S., Zhu, B.: Towards Secure and Practical MACs for Body Sensor Networks. In: Roy, B.K., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 182–198. Springer, Heidelberg (2009)
Nakahara, J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic Cryptanalysis of the Block Cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)
Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., Nieto, J.M.G. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)
Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis. J. Cryptology 21(1), 131–147 (2008)
Wang, M.: Differential Cryptanalysis of Reduced-Round PRESENT. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg (2008)
Wang, M., Wang, X., Hui, L.C.: Differential-algebraic cryptanalysis of reduced-round of Serpent-256. SCIENCE CHINA Information Sciences 53(3), 546–556 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, M., Sun, Y., Mouha, N., Preneel, B. (2011). Algebraic Techniques in Differential Cryptanalysis Revisited. In: Parampalli, U., Hawkes, P. (eds) Information Security and Privacy. ACISP 2011. Lecture Notes in Computer Science, vol 6812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22497-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-22497-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22496-6
Online ISBN: 978-3-642-22497-3
eBook Packages: Computer ScienceComputer Science (R0)