Skip to main content

Low Power Optimized Array Multiplier with Reduced Area

  • Conference paper
High Performance Architecture and Grid Computing (HPAGC 2011)

Abstract

Multiplication is a fundamental operation in most arithmetic computing systems. Multipliers are indispensable part of DSP processing, FFT, convolution and many more areas where computation is required. In this paper an improved optimized design of 32-bit unsigned array multiplier with low power and reduced area is proposed. The power dissipation of optimized multiplier design is reduced by 3.82 percent and more than 30 percent as compared to multipliers using ripple carry and carry select adders. The area reduction is highly achieved by reducing the gate count.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marimuthu, C.N., Thangarj, P.: Low power high performance multiplier. ICGST International Journal on Programmable Devices, Circuits and Systems, PDCS 8(1), 31–38 (2008)

    Google Scholar 

  2. Krat, H., Al-Taie, A.Y.: Performance analysis of a 32-bit multiplier with a carry-look-ahead adder and a 32-bit multiplier with a ripple adder using VHDL. Journal of Computer Science 4, 305–308 (2008)

    Article  Google Scholar 

  3. Lee, J.-G., Lee, J.-A., Lee, B.-S., Ercegovac, M.D.: A design method for heterogeneous adders. In: Lee, Y.-H., Kim, H.-N., Kim, J., Park, Y.W., Yang, L.T., Kim, S.W. (eds.) ICESS 2007. LNCS, vol. 4523, pp. 121–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Amelifard, B., Fallah, F., Pedram, M.: Closing the gap between carry select adder and ripple carry adder: a new class of low-power high-performance adders. In: Proc. of IEEE International Symposium on Quality Electronic Design, ISQED (2005)

    Google Scholar 

  5. Zhijun, Huang: High-performance low-power left-to-right array multiplier design. IEEE Trans. Comput. 54(3), 272–283 (2005)

    Article  Google Scholar 

  6. Fonseca, M.R., da Costa, E.A.C., Bampi, S.: Performance optimization of radix-2^m multipliers using carry save adders. In: XI Workshop Iberchip, Salvador-BA, pp. 126–131 (2005)

    Google Scholar 

  7. Wang, J.-S., Kuo., C.-N., Yang, T.H.: Low power fixed width multiplier. In: Proc. of the International Symposium on Low Power Electronics and Design, pp. 307–312 (2004)

    Google Scholar 

  8. Fujino, M., Moshnyaga, V.G.: Dynamic operand transformation for low power multiplier accumulator design. In: Proc. of Circuit and Systems, vol. 5, pp. 345–348 (2003)

    Google Scholar 

  9. Huang, Z.: High-Level optimization techniques for low-power multiplier design. Ph.D dissertation (2003)

    Google Scholar 

  10. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital integrated circuit. Electronics and VLSI Series. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  11. Yu, Z., Wasserman, L.: A painless way to reduce power dissipation by over 18% in Booth-encoded carry-save array multipliers for DSP. In: IEEE Workshop on Signal Processing Systems, pp. 571–580 (2000)

    Google Scholar 

  12. Oklobdzija, V.G.: High-Speed VLSI Arithmetic Units: Adders and Multipliers. In: Chandrakasan, A. (ed.) Design of High-Performance Microprocessor Circuits. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  13. Parhami, B.: Computer Arithmetic, Algorithm and Hardware Design, pp. 91–119. Oxford University Press, New York (2000)

    Google Scholar 

  14. Meier, P.C.H.: Analysis and design of low power digital multipliers. Ph.D dissertation, Carnegie Mellon University,Pittsburgh, Pennsylvania (August 1999)

    Google Scholar 

  15. Keane, G., Spanier, J., Woods, R.: The impact of data Characteristics and hardware topology on hardware selection for low power DSP. In: Proc. Low Power Electronics and Design, pp. 94–96 (1998)

    Google Scholar 

  16. Farooqui, A.A., Oklobdzia, V.G.: General data-path organization of a MAC unit for VLSI implementation of DSP processors. In: Proc. IEEE Circuits and Systems Conf., pp. 260–263 (1998)

    Google Scholar 

  17. Oklobdzjia, V.G., Villeger, D., Liu, S.S.: A Method for Speed Optimized Partial Product Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach. IEEE Transactions on Computers 45(3) (March 1996)

    Google Scholar 

  18. Wallace, C.S.: A suggestion for a fast multiplier. IEEE Trans. Electron. Computing EC-13, 14–17 (1964)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Devi, P., Singh, G.p., singh, B. (2011). Low Power Optimized Array Multiplier with Reduced Area. In: Mantri, A., Nandi, S., Kumar, G., Kumar, S. (eds) High Performance Architecture and Grid Computing. HPAGC 2011. Communications in Computer and Information Science, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22577-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22577-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22576-5

  • Online ISBN: 978-3-642-22577-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics