Abstract
The paper presents a co-occurrence based approach to extracting semantic relations from text. We concentrate on Semantic Relations as relations among concepts, and instances of such relations, as used in taxonomies and ontologies. We show how typed semantic relations can be derived from association networks by filters based on linguistic and non-linguistic knowledge. The main point of the paper is to argue that there is no single step derivation of knowledge about semantic relations. Learning semantic relations from text requires linguistic and non-linguistic knowledge sources of different kinds and quality that need to iteratively interact in order to derive high quality knowledge about semantic relations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biemann, C.: Kookkurrenzen höherer Ordnung. In: Heyer, G., Quasthoff, U., Wittig, T. (eds.) Text Mining: Wissensrohstoff Text, W3L, Herdecke, pp. 161–167 (2006)
Biemann, C., Bordag, S., Quasthoff, U.: Automatic acquisition of paradigmatic relations using iterated co-occurrences. In: Proceedings of LREC 2004, ELRA, Lisboa, Portugal (2004)
Biemann, C., Quasthoff, U., Heyer, G., Holz, F.: ASV Toolbox – a modular collection of language exploration tools. In: Proceedings of LREC 2008, ELRA, Marrakech, Morocco (2008)
Bordag, S.: Sentence co-occurrences as small-world-graphs: A solution to automatic lexical disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 329–333. Springer, Heidelberg (2003)
Bordag, S.: Elements of knowledge free and unsupervised lexical acquisition. PhD thesis, University of Leipzig, Computer Science Department (2007)
Bordag, S., Heyer, G.: A structuralist framework for quantitative linguistics. In: Mehler, A., Köhler, R. (eds.) Aspects of Automatic Text Analysis. Springer, Heidelberg (2005)
Bordag, S., Heyer, G., Quasthoff, U.: Small worlds of concepts and other principles of semantic search. In: Böhme, T., Heyer, G., Unger, H. (eds.) IICS 2003. LNCS, vol. 2877, pp. 10–19. Springer, Heidelberg (2003)
Brown, P.F., de Souza, P.V., Mercer, R.L., Watson, T.J., Della Pietra, V.J., Lai, J.C.: Class-based n-gram models of natural language. Computational Linguistics 18, 467–479 (1992)
Büchler, M., Heyer, G.: Leipzig Linguistic Services – a 4 years summary of providing linguistic web services. In: Proceedings of the Conference on Text Mining Services (TMS 2009) Leipzig University, Leipzig, Band XIV, Leipziger Beiträge zur Informatik (2009)
Bunescu, R.C., Mooney, R.J.: Statistical relational learning for natural language information extraction. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning, pp. 535–552. MIT Press, Cambridge (2007)
Channabasavaiah, K., Holley, K., Tuggle, E.: SOA is more than web services (2004), http://www.looselycoupled.com/opinion/2004/chann-soa-infr0630.html (last accessed: March 03, 2009)
Church, K.W.: One term or two? In: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval. SIGIR 1995, pp. 310–318. ACM, New York (1995)
Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. ACL 2004, Morristown, NJ (2004)
Culotta, A., McCallum, A., Betz, J.: Integrating probabilistic extraction models and data mining to discover relations and patterns in text. In: Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp. 296–303 (2006)
Dagan, I., Lee, L., Pereira, F.C.N.: Similarity-based models of word cooccurrence probabilities. Machine Learning 34, 43–69 (1999)
Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Transactions on Graphics 15(4), 301–331 (1996)
Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19(1), 61–74 (1993)
Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study. Artificial Intelligence 165, 91–134 (2005)
Feldman, R., Sanger, J.: The Text Mining Handbook. Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, Cambridge (2007)
Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th International Conference on Computational Linguistics (COLING 1992), Nantes, France, August 23-28, pp. 539–545 (1992)
Heyer, G., Läuter, M., Quasthoff, U., Wittig, T., Wolff, C.: Learning relations using collocations. In: Maedche, A., Staab, S., Nedellec, C., Hovy, E.H. (eds.) JCAI 2001 Workshop on Ontology Learning. CEUR Workshop Proceedings, Seattle, USA, August 4, vol. 38 (2001), CEUR WS.org
Heyer, G., Quasthoff, U., Wittig, T.: Text Mining: Wissensrohstoff Text. W3L, Herdecke (2006)
Lin, D.: Using collocation statistics in information extraction. In: Proceedings of the 7th Message Understanding Conference 1998, MUC-7 (1998)
Lin, D., Zhao, S., Qin, L., Zhou, M.: Identifying synonyms among distributionally similar words. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 1492–1493. Morgan Kaufmann Publishers Inc., San Francisco (2003)
Lyons, J.: Semantics, vol. I and II. Cambridge University Press, Cambridge (1977)
Navigli, R., Velardi, P., Cucchiarelli, R., Neri, F.: Extending and enriching WordNet with OntoLearn. In: Proc. of the GWC 2004, pp. 279–284. Springer, Heidelberg (2004)
Ort, E.: Service-oriented architecture and web services: Concepts, technologies, and tools (2005), http://java.sun.com/developer/technicalArticles/WebServices/soa2/SOATerms.html (last accessed: March 3, 2009)
Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: SIGIR 1999: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 206–213. ACM, New York (1999)
de Saussure, F.: Grundfragen der allgemeinen Sprachwissenschaft. De Gruyter, Berlin (1967)
Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proceedings of the eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2002, pp. 32–41. ACM, New York (2002)
Terra, E., Clarke, C.L.A.: Frequency estimates for statistical word similarity measures. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, NAACL 2003 Association for Computational Linguistics. Morristown, NJ, USA, vol. 1, pp. 165–172 (2003)
Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. ACL 2002, Association for Computational Linguistics, Morristown, NJ, USA, pp. 417–424 (2002)
Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. Journal of Machine Learning Research 3, 1083–1106 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Heyer, G. (2011). Learning Semantic Relations from Text. In: Mehler, A., Kühnberger, KU., Lobin, H., Lüngen, H., Storrer, A., Witt, A. (eds) Modeling, Learning, and Processing of Text Technological Data Structures. Studies in Computational Intelligence, vol 370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22613-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-22613-7_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22612-0
Online ISBN: 978-3-642-22613-7
eBook Packages: EngineeringEngineering (R0)