Skip to main content

Geospatial Knowledge Discovery Framework for Crime Domain

  • Chapter
Transactions on Computational Science XIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6750))

  • 1102 Accesses

Abstract

The value that an application delivers can be improved if the presentation of the underlying functionality is enhanced with user friendly features and intuitive results portrayal. Overlays on top of a map are one such feature which enables merely statistical results to be displayed in an intuitive manner. Crime Analysis is quite crucial in giving trends to the police department about the possibility of future crime and associated information such as location of the crime and probable methods, type of crime etc. The geospatial Knowledge Discovery Framework aims to meet the needs of various domains that have geospatial significance specifically a crime department, which can use this software to track the patterns of crime that have occurred using the data mining algorithms included in the framework, also, it can be used by a public user to find out the vulnerability of a particular location with respect to crime occurrences. The algorithms [2] used vary from simple geospatial search such as Bounded box query to complex clustering algorithms [1] such as Dbscan. Graphical visualization is also a part of the framework which uses Jasper reports to create bar charts of various forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hartigan, J.A.: Clustering Algorithms. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1975)

    MATH  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001) ISBN 0-262-03293-7, Section 34.2: Polynomial-time verification, pp. 979–983, Cambridge, Massachusetts

    Google Scholar 

  3. Bremner, D., Demaine, E., Erickson, J., Iacono, J., Langerman, S., Morin, P., Toussaint, G.: Output-sensitive algorithms for computing nearest-neighbor decision boundaries. Discrete and Computational Geometry 33(4), 593–604 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231. AAAI Press, Menlo Park (1996) ISBN 1-57735-004-9

    Google Scholar 

  5. Buttenfield, B.P.: Looking Forward: Geographic Information Services and Libraries in the Future. In: Cartography and Geographic Information Society, American Congress on Surveying and Mapping (ACSM), vol. 25(3), pp. 161–171 (1998)

    Google Scholar 

  6. Miller, H.J., Han, J. (eds.): Geographic data mining and knowledge discovery. Taylor & Francis, London (2001)

    Google Scholar 

  7. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. WolframMath World, http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html

  9. Pfeiffer, D.U.: Issues related to handling of spatial data. Massey University, Palmerston North (1996)

    Google Scholar 

  10. Murray, A., McGuffog, I., Western, J., Mullins, P.: Exploratory Spatial Data Analysis Techniques for Examining Urban Crime. British Journal of Criminology 41, 309–329 (2001)

    Article  Google Scholar 

  11. Murray, A.T., Estivill-Castro, V.: Cluster discovery techniques for exploratory spatial data analysis. International Journal of Geographical Information Science 12, 431–443 (1998)

    Article  Google Scholar 

  12. Schumacher, B.J., Leitner, M.: 1999 Spatial Crime Displacement Resulting from Large-Scale Urban Renewal Programs in the City of Baltimore, MD: A GIS Modeling Approach. GeoComputation CD-ROM, Greenwich, UK (1999)

    Google Scholar 

  13. Grubesic, T.: Detecting Hot Spots Using Cluster Analysis and GIS. Presentation at the National Institute of Justice’s Fifth Annual International Crime Mapping Research Conference, Dallas (December 2001), http://www.ojp.usdoj.gov/nij/maps/Conferences/01conf/Papers.html

  14. Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  15. Estivill-Castro, V., Lee, I.: Fast Spatial Clustering with Different Metrics and in the Presence of Obstacles. In: ACM-GIS, pp. 142–147 (2001)

    Google Scholar 

  16. Brown, L.D., Lin, Y.: Racetrack Betting and Consensus of Subjective Probabilities. Statistics and Probability Letters 62, 175–187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brown, D.E., Hagen, S.: Data association methods with applications to law enforcement. Decision Support Systems (34), 369–378 (2002)

    Article  Google Scholar 

  18. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 316–323 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, R., Sharma, K. (2011). Geospatial Knowledge Discovery Framework for Crime Domain. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XIII. Lecture Notes in Computer Science, vol 6750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22619-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22619-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22618-2

  • Online ISBN: 978-3-642-22619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics