Abstract
We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set L of n lines in the plane in O(n 2 logn) time and O(n 2) space. In the process, we derive complexity bounds and certain structural properties of such diagrams. An advantage of our approach over the general purpose machinery, which requires computation of the lower envelope of a set of halfplanes in three-dimensional space, lies in its relative simplicity. Besides, we point out that the unweighted Voronoi diagram for n lines in the plane has a simple structure, and can be obtained in optimal Θ(n 2) time and space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing the Voronoi diagram of a convex polygon. In: Proc. 19th Annu. ACM Symp. on Theory of Computing STOC 1987, pp. 39–45. ACM, New York (1987)
Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)
Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)
Barequet, G., Dickerson, M.T., Drysdale, R.L.S.: 2-Point site Voronoi diagrams. Discr. Appl. Math. 122(1-3), 37–54 (2002)
Barequet, G., Vyatkina, K.: On Voronoi diagrams for lines in the plane. In: Proc. 9th Int. Conf. on Comp. Sci. and its Appl. ICCSA 2009, pp. 159–168. IEEE-CS, Los Alamitos (2009)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)
Boissonnat, J.-D., Yvinec, M.: Géométrie Algorithmique. Ediscience international, Paris (1995)
Chew, L.P., Kedem, K., Sharir, M., Tagansky, B., Welzl, E.: Voronoi diagrams of lines in 3-space under polyhedral convex distance functions. J. Algorithms 29(2), 238–255 (1998)
Dickerson, M.T., Eppstein, D.: Animating a continuous family of two-site Voronoi diagrams (and a proof of a bound on the number of regions). In: Proc. 25th ACM Symp. on Comp. Geom., pp. 92–93. ACM, New York (2009)
Felkel, P., Obdržálek, S.: Straight skeleton implementation. In: Proc. Spring Conf. on Computer Graphics, pp. 210–218 (1998)
Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)
Gavrilova, M. (ed.): Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Springer, Heidelberg (2008)
Hanniel, I., Barequet, G.: On the triangle-perimeter two-site Voronoi diagram. In: Proc. 6th Int. Symp. on Voronoi Diagrams, pp. 129–136. IEEE-CS, Los Alamitos (2009)
Koltun, V., Sharir, M.: 3-Dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations. SIAM J. Comput. 32(3), 616–642 (2003)
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, Chichester (2001)
Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th Annu. Symp. Found. Comput. Sci., pp. 151–162 (1975)
Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions. Discr. Comput. Geom. 12, 327–345 (1994)
Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)
Vyatkina, K.: On constructing the Voronoi diagram for lines in the plane under a linear-function distance. In: Proc. 10th Int. Conf. on Comp. Sci. and its Appl. ICCSA 2010, pp. 92–100. IEEE-CS, Los Alamitos (2010)
Vyatkina, K., Barequet, G.: On 2-site Voronoi diagrams under arithmetic combinations of point-to-point distances. In: Proc. 7th Int. Symp. on Voronoi Diagrams, pp. 33–41. IEEE-CS, Los Alamitos (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Vyatkina, K., Barequet, G. (2011). On Multiplicatively Weighted Voronoi Diagrams for Lines in the Plane. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XIII. Lecture Notes in Computer Science, vol 6750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22619-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-22619-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22618-2
Online ISBN: 978-3-642-22619-9
eBook Packages: Computer ScienceComputer Science (R0)