Skip to main content

On Multiplicatively Weighted Voronoi Diagrams for Lines in the Plane

  • Chapter
Transactions on Computational Science XIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6750))

  • 1088 Accesses

Abstract

We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set L of n lines in the plane in O(n 2 logn) time and O(n 2) space. In the process, we derive complexity bounds and certain structural properties of such diagrams. An advantage of our approach over the general purpose machinery, which requires computation of the lower envelope of a set of halfplanes in three-dimensional space, lies in its relative simplicity. Besides, we point out that the unweighted Voronoi diagram for n lines in the plane has a simple structure, and can be obtained in optimal Θ(n 2) time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing the Voronoi diagram of a convex polygon. In: Proc. 19th Annu. ACM Symp. on Theory of Computing STOC 1987, pp. 39–45. ACM, New York (1987)

    Google Scholar 

  2. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  3. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barequet, G., Dickerson, M.T., Drysdale, R.L.S.: 2-Point site Voronoi diagrams. Discr. Appl. Math. 122(1-3), 37–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barequet, G., Vyatkina, K.: On Voronoi diagrams for lines in the plane. In: Proc. 9th Int. Conf. on Comp. Sci. and its Appl. ICCSA 2009, pp. 159–168. IEEE-CS, Los Alamitos (2009)

    Google Scholar 

  6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  7. Boissonnat, J.-D., Yvinec, M.: Géométrie Algorithmique. Ediscience international, Paris (1995)

    Google Scholar 

  8. Chew, L.P., Kedem, K., Sharir, M., Tagansky, B., Welzl, E.: Voronoi diagrams of lines in 3-space under polyhedral convex distance functions. J. Algorithms 29(2), 238–255 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickerson, M.T., Eppstein, D.: Animating a continuous family of two-site Voronoi diagrams (and a proof of a bound on the number of regions). In: Proc. 25th ACM Symp. on Comp. Geom., pp. 92–93. ACM, New York (2009)

    Google Scholar 

  10. Felkel, P., Obdržálek, S.: Straight skeleton implementation. In: Proc. Spring Conf. on Computer Graphics, pp. 210–218 (1998)

    Google Scholar 

  11. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavrilova, M. (ed.): Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  13. Hanniel, I., Barequet, G.: On the triangle-perimeter two-site Voronoi diagram. In: Proc. 6th Int. Symp. on Voronoi Diagrams, pp. 129–136. IEEE-CS, Los Alamitos (2009)

    Google Scholar 

  14. Koltun, V., Sharir, M.: 3-Dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations. SIAM J. Comput. 32(3), 616–642 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, Chichester (2001)

    MATH  Google Scholar 

  16. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th Annu. Symp. Found. Comput. Sci., pp. 151–162 (1975)

    Google Scholar 

  17. Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions. Discr. Comput. Geom. 12, 327–345 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Vyatkina, K.: On constructing the Voronoi diagram for lines in the plane under a linear-function distance. In: Proc. 10th Int. Conf. on Comp. Sci. and its Appl. ICCSA 2010, pp. 92–100. IEEE-CS, Los Alamitos (2010)

    Google Scholar 

  20. Vyatkina, K., Barequet, G.: On 2-site Voronoi diagrams under arithmetic combinations of point-to-point distances. In: Proc. 7th Int. Symp. on Voronoi Diagrams, pp. 33–41. IEEE-CS, Los Alamitos (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vyatkina, K., Barequet, G. (2011). On Multiplicatively Weighted Voronoi Diagrams for Lines in the Plane. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XIII. Lecture Notes in Computer Science, vol 6750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22619-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22619-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22618-2

  • Online ISBN: 978-3-642-22619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics