Skip to main content

Fast Streaming 3D Level Set Segmentation on the GPU for Smooth Multi-phase Segmentation

  • Chapter
Transactions on Computational Science XIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6750))

  • 1224 Accesses

Abstract

Level set method based segmentation provides an efficient tool for topological and geometrical shape handling, but it is slow due to high computational burden. In this work, we provide a framework for streaming computations on large volumetric images on the GPU. A streaming computational model allows processing large amounts of data with small memory footprint. Efficient transfer of data to and from the graphics hardware is performed via a memory manager. We show volumetric segmentation using a higher order, multi-phase level set method with speedups of the order of 5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo. vol. 1, pp. 705–708. Citeseer (2002)

    Google Scholar 

  2. Bajaj, C., Xu, G., Zhang, Q.: A higher order level set method with applications to smooth surface constructions. ICES report 06-18. Institute for Computational Engineering and Sciences, The University of Texas at Austin (2006)

    Google Scholar 

  3. Bajaj, C.L., Xu, G., Zhang, Q.: A fast variational method for the construction of resolution adaptive C 2-smooth molecular surfaces. Computer Methods in Applied Mechanics and Engineering 198(21-26), 1684–1690 (2009)

    Article  MATH  Google Scholar 

  4. Blelloch, G.E.: Prefix sums and their applications. Tech. Rep. CMU-CS-90-190, School of Computer Science, Carnegie Mellon University (November 1990)

    Google Scholar 

  5. Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)

    Article  Google Scholar 

  6. Chan, T.F., Vese, L.A.: A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: IEEE Workshop on Variational and Level Set Methods, pp. 161–168 (2001)

    Google Scholar 

  7. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to parallel computing. Addison-Wesley, Reading (2003)

    MATH  Google Scholar 

  8. Gustafson, J.L.: Reevaluating Amdahl’s law. Communications of the ACM 31, 532–533 (1988)

    Article  Google Scholar 

  9. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. GPU Gems 3 (2007)

    Google Scholar 

  10. Krissian, K., Westin, C.F.: Fast sub-voxel re-initialization of the distance map for level set methods. Pattern Recognition Letters 26(10), 1532–1542 (2005)

    Article  Google Scholar 

  11. Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: A streaming narrow-band algorithm: interactive computation and visualization of level sets. IEEE Transactions on Visualization and Computer Graphics 10(4), 422–433 (2004)

    Article  Google Scholar 

  12. Nvidia, C.: Compute Unified Device Architecture-programming guide version 2.0 (2009)

    Google Scholar 

  13. Osher, S., Fedkiw, R.P.: Level set methods and dynamic implicit surfaces. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  14. Papandreou, G., Maragos, P.: Multigrid geometric active contour models. IEEE Transactions on Image Processing 16(1), 229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sharma, O., Anton, F.: CUDA based level set method for 3D reconstruction of fishes from large acoustic data. In: International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 17 (2009)

    Google Scholar 

  17. Strzodka, R., Rumpf, M.: Level set segmentation in graphics hardware. In: Proc. IEEE International Conference on Image Processing, pp. 1103–1106 (2001)

    Google Scholar 

  18. UT-CVC: Volume Rover (2006), http://cvcweb.ices.utexas.edu/cvc/projects/project.php?proID=9

  19. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  20. Weickert, J., Romeny, B., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7(3), 398–410 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, O., Zhang, Q., Anton, F., Bajaj, C. (2011). Fast Streaming 3D Level Set Segmentation on the GPU for Smooth Multi-phase Segmentation. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XIII. Lecture Notes in Computer Science, vol 6750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22619-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22619-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22618-2

  • Online ISBN: 978-3-642-22619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics