Skip to main content

Valued Dominance-Based Rough Set Approach to Incomplete Information System

  • Chapter
Transactions on Computational Science XIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6750))

  • 1069 Accesses

Abstract

In this paper, we present an explorative research focusing on dominance–based rough set approach to the incomplete information systems. In most of the rough set literatures, an incomplete information system indicates an information system with unknown values. By assuming that the unknown value can be compared with any other values in the domain of the corresponding attributes, the concept of the valued dominance relation is proposed to show the probability that an object is dominating another one. The fuzzy rough approximations in terms of the valued dominance relation are then constructed. It is shown that by the valued dominance–based fuzzy rough set, we can obtain greater lower approximations and smaller upper approximations than the old dominance–based rough set in the incomplete information systems. Further on the problem of inducing “at least” and “at most” decision rules from incomplete decision system is also addressed. Some numerical examples are employed to substantiate the conceptual arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets–theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  2. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernet. Syst. 29, 661–688 (1998)

    Article  MATH  Google Scholar 

  3. Pawlak, Z.: Rough sets and intelligent data analysis. Inform. Sci. 147, 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inform. Sci. 177, 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inform. Sci. 177, 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inform. Sci. 177, 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation by dominance relations. Int. J. Intell. Syst. 17, 153–171 (2002)

    Article  MATH  Google Scholar 

  8. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129, 1–47 (2002)

    Article  MATH  Google Scholar 

  9. Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple–premise gradual decision rules. Int. J. Approx. Reason. 41, 179–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Błaszczyński, J., Greco, S., Słowiński, R.: Multi–criteria classification–A new scheme for application of dominance–based decision rules. Eur. J. Oper. Res. 181, 1030–1044 (2007)

    Article  MATH  Google Scholar 

  11. Fan, T.F., Liu, D.R., Tzeng, G.H.: Rough set–based logics for multicriteria decision analysis. Eur. J. Oper. Res. 182, 340–355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inform. Sci. 112, 39–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Latkowski, R.: Flexible indiscernibility relations for missing attribute values. Fund. Inform. 67, 131–147 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Leung, Y., Li, D.Y.: Maximal consistent block technique for rule acquisition in incomplete information systems. Inform. Sci. 115, 85–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leung, Y., Wu, W.Z., Zhang, W.X.: Knowledge acquisition in incomplete information systems: a rough set approach. Eur. J. Oper. Res. 168, 464–473 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Wang, G.Y.: Extension of rough set under incomplete information systems. In: Proceeding of the 11th IEEE International Conference on Fuzzy Systems, pp. 1098–1103 (2002)

    Google Scholar 

  17. Grzymala–Busse, J.W.: Characteristic relations for incomplete data: a generalization of the indiscernibility relation. In: Proceeding of the Third International Conference on Rough Sets and Current Trends in Computing, pp. 244–253 (2004)

    Google Scholar 

  18. Grzymała-Busse, J.W.: Data with missing attribute values: Generalization of indiscernibility relation and rule induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Wu, W.Z., Zhang, W.X., Li, H.Z.: Knowledge acquisition in incomplete fuzzy information systems via the rough set approach. Expert Syst. 20, 280–286 (2003)

    Article  Google Scholar 

  20. Yang, X.B., Yang, J.Y., Wu, C., Yu, D.J.: Dominance–based rough set approach and knowledge reductions in incomplete ordered information system. Inform. Sci. 178, 1219–1234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shao, M.W., Zhang, W.X.: Dominance relation and rules in an incomplete ordered information system. Int. J. Intell. Syst. 20, 13–27 (2005)

    Article  MATH  Google Scholar 

  22. Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. Comput. Intell. 17, 545–566 (2001)

    Article  MATH  Google Scholar 

  23. Stefanowski, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information. In: Proceeding of New Directions in Rough Sets, Data Mining and Granular–Soft Computing, pp. 73–82 (1999)

    Google Scholar 

  24. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 191–208 (1990)

    Article  MATH  Google Scholar 

  25. Yeung, D.S., Chen, D.G., Tsang, E.C.C., Lee, J.W.T., Wang, X.Z.: On the generalization of fuzzy rough sets. IEEE T. Fuzzy Syst. 13, 343–361 (2005)

    Article  Google Scholar 

  26. Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Set. Syst. 100, 327–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bhatt, R.B., Gopal, M.: On the compact computational domain of fuzzy-rough sets. Pattern Recogn. Lett. 26, 1632–1640 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, X., Dou, H. (2011). Valued Dominance-Based Rough Set Approach to Incomplete Information System. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XIII. Lecture Notes in Computer Science, vol 6750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22619-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22619-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22618-2

  • Online ISBN: 978-3-642-22619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics