Skip to main content

An FPGA-Based Fault-Tolerant 2D Systolic Array for Matrix Multiplications

  • Chapter
Transactions on Computational Science XIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6750))

  • 1119 Accesses

Abstract

This paper proposes a method to implement fault-tolerant self-reconfigurable 2D systolic arrays to calculate matrix multiplications on FPGAs. The array uses a 1.5-track switching network for reconfiguration. The array implemented is compared to the corresponding non-redundant case by simulations of concrete examples, in terms of hardware size, total array reliability where not only faults of processing elements but also faults in the 1.5-track switching network are considered, computation time and electricity consumption. The simulation results show that the fault-tolerant array is better than the corresponding non-redundant one, in terms of the total array reliability, even if faults in the 1.5-track switching network are not negligible. In Appendix, we discuss the relation between the fault rates of the proposed fault-tolerant array and the corresponding non-redundant one and show that the former can be significantly decreased for the array of large size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lim, H., Piuri, V., Swartzlander, E.E.: A serial-parallel architecture for two-dimensional discrete cosine and inverse discrete cosine transforms. IEEE Trans. on Comput. 49(12), 1297–1309 (2000)

    Article  MathSciNet  Google Scholar 

  2. Kung, S.Y., Jean, S.N., Chang, C.W.: Fault-tolerant array processors using single-track switches. IEEE Trans. Comput. 38(4), 501–514 (1989)

    Article  Google Scholar 

  3. Shigei, N., Miyajima, H.: On the search for effective spare arrangement for reconfigurable processor arrays using genetic algorithm. IEICE Trans. Fundamentals E81-A(9), 1898–1901 (1998)

    Google Scholar 

  4. Kim, G., Yoon, H.: On submesh allocation for mesh multicomputers: A best-fit allocation and a virtual submesh allocation for faulty meshes. IEEE Trans. Parallel and Distributed Systems 9(2), 175–185 (1998)

    Article  Google Scholar 

  5. Yamada, T., Ueno, S.: Fault-tolerant meshes with efficient layouts. IEICE Trans. Inf. & Syst. E81-D(1), 56–65 (1998)

    Google Scholar 

  6. LaForge, L.E.: What designers of microelectronic systems should know about arrays spared by rows and columns. IEEE Trans. Reliability 49(3), 251–272 (2000)

    Article  Google Scholar 

  7. Zhang, L.: Fault-tolerant meshes with small degree. IEEE Trans. Comput. 51(5), 553–560 (2002)

    Article  MathSciNet  Google Scholar 

  8. Low, C.P.: An efficient reconfiguration algorithm for degradable VLSI/WSI arrays. IEEE Trans. Comput. 49(6), 553–559 (2000)

    Article  Google Scholar 

  9. Horita, T., Takanami, I.: Fault tolerant processor arrays based on the 1\(\frac{1}{2}\)-track switches with flexible spare distributions. IEEE Trans. Comput. 49(6), 542–552 (2000)

    Article  Google Scholar 

  10. Horita, T., Takanami, I.: A built-in self-reconstruction approach for partitioned mesh-arrays using neural algorithm. IEICE Trans. Inf. & Syst. E79-D(8), 1160–1167 (1996)

    Google Scholar 

  11. Horita, T., Takanami, I.: A system for efficiently self-reconstructing 1\(\frac{1}{2}\)-track switch torus arrays. IEICE Trans. Inf. & Syst. E84-D(12), 1801–1809 (2001)

    Google Scholar 

  12. Horita, T., Takanami, I.: A system for efficiently self-reconstructing array system using E-1\(\frac{1}{2}\)-track switches. IEICE Trans. Inf. & Syst. E86-D(12), 2743–2752 (2003)

    Google Scholar 

  13. Horita, T., Takanami, I.: The total system reliabilities for fault-tolerant self-reconfigurable array systems. In: Advances in Computer Science and Engineering, vol. 2(2), pp. 165–187. Pushpa Publishing House (2008)

    Google Scholar 

  14. Horita, T., Yamashita, T., Takanami, I.: A reliability analysis for various fault-tolerant 2D processor arrays using 1.5-track switches. In: Advances in Computer Science and Engineering, vol. 2(3), pp. 243–266. Pushpa Publishing House (2008)

    Google Scholar 

  15. Horita, T., Katou, Y., Takanami, I.: An analysis for fault-tolerant 3D processor arrays using 1.5-track switches. IEICE Trans. Fundamentals E91-A(2), 623–632 (2008)

    Article  Google Scholar 

  16. Bednara, M., Daldrup, M., Teich, J., von zur Gathen, J., Shokrollahi, J.: Tradeoff analysis of FPGA based elliptic curve cryptography. In: Proc. IEEE Int’l Symp. on ISCAS 2002, vol. 5, pp. 797–800 (2002)

    Google Scholar 

  17. Ors, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware implementation of a montgomery modular multiplier in a systolic array. In: Proc. IEEE Int’l Symp. on IPDPS 2003, pp. 184–192 (2003)

    Google Scholar 

  18. Wang, Y.B., Dong, X.J., Tian, Z.G.: FPGA based design of elliptic curve cryptography coprocessor. In: Proc. Int’l Conf. on ICNC 2007, vol. 5, pp. 185–189 (2007)

    Google Scholar 

  19. Kim, Y., Jeong, H.: A systolic FPGA architecture of two-level dynamic programming for connected speech recognition. IEICE Trans. Inf. & Syst. E90-D(2), 562–568 (2007)

    Article  Google Scholar 

  20. Fukushi, M., Horiguchi, S.: Self-reconfigurable mesh array system on FPGA. In: Proc. IEEE Intl Symp. on DFT, pp. 240–248 (2000)

    Google Scholar 

  21. Horita, T., Takanami, I.: An implementation of a fault-tolerant 2D systolic array on FPGAs and its evaluation. In: Proc. CSREA Int’l Conf. on Technologies and Applications PDPTA 2009, pp. 136–142 (2009)

    Google Scholar 

  22. Altera reliability report homepage (2009), http://www.altera.com/literature/rr/rr.pdf

  23. Horita, T., Takanami, I.: An efficiently reconfigurable architecture for mesh-arrays with PE and link faults. IEICE Trans. Inf. & Syst. E80-D(9), 879–885 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horita, T., Takanami, I. (2011). An FPGA-Based Fault-Tolerant 2D Systolic Array for Matrix Multiplications. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XIII. Lecture Notes in Computer Science, vol 6750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22619-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22619-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22618-2

  • Online ISBN: 978-3-642-22619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics