Skip to main content

Computing the Girth of a Planar Graph in Linear Time

  • Conference paper
Computing and Combinatorics (COCOON 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6842))

Included in the following conference series:

Abstract

The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n 5/4logn) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(nlog2 n). Weimann and Yuster further reduced the running time to O(nlogn). In this paper, we solve the problem in O(n) time.

See [9] for a full version of this extended abstract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color–coding. JACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B.: Chromatic number, girth and maximal degree. Discrete Math. 24, 311–314 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borradaile, G., Klein, P.N.: An O(nlogn) algorithm for maximum st-flow in a directed planar graph. JACM 56(2), 9.1–9.30 (2009)

    Article  MATH  Google Scholar 

  6. Boyer, J.M., Myrvold, W.J.: Stop minding your P’s and Q’s: A simplified planar embedding algorithm. In: SODA, pp. 140–146 (1999)

    Google Scholar 

  7. Chalermsook, P., Fakcharoenphol, J., Nanongkai, D.: A deterministic near-linear time algorithm for finding minimum cuts in planar graphs. In: SODA, pp. 828–829 (2004)

    Google Scholar 

  8. Chandran, L.S., Subramanian, C.R.: Girth and treewidth. Journal of Combinatorial Theory, Series B 93(1), 23–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, H.-C., Lu, H.-I.: Computing the girth of a planar graph in linear time (2011), http://arxiv.org/abs/1104.4892

  10. Cook, R.J.: Chromatic number and girth. Periodica Mathematica Hungarica 6, 103–107 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diestel, R.: Graph Theory, 2nd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  13. Djidjev, H.N.: A faster algorithm for computing the girth of planar and bounded genus graphs. ACM Transactions on Algorithms 7(1), 3.1–3.16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dorn, F.: Planar subgraph isomorphism revisited. In: STACS, pp. 263–274 (2010)

    Google Scholar 

  15. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3(3), 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. ErdÅ‘s, P.: Graph theory and probability. Canadian Journal of Math. 11, 34–38 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In: SODA, pp. 794–804 (2010)

    Google Scholar 

  18. Goodrich, M.T.: Planar separators and parallel polygon triangulation. Journal of Computer and System Sciences 51(3), 374–389 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed graph. Journal of Algorithms 17(3), 424–446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved minimum cuts and maximum flows in undirected planar graphs. In: STOC, pp. 313–322 (2011), http://portal.acm.org/citation.cfm?doid=1993636.1993679

  22. Karger, D.R.: Minimum cuts in near-linear time. JACM 47(1), 46–76 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. JACM 43(4), 601–640 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA, pp. 146–155 (2005)

    Google Scholar 

  25. Lingas, A., Lundell, E.-M.: Efficient approximation algorithms for shortest cycles in undirected graphs. Information Processing Letters 109(10), 493–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Math. 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lovász, L.: On chromatic number of finite set systems. Acta Mathematica Academiae Scientiarum Hungaricae 19, 59–67 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Monien, B.: The complexity of determining a shortest cycle of even length. Computing 31(4), 355–369 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shih, W.-K., Wu, S., Kuo, Y.-S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Transactions on Computers 39(5), 694–697 (1990)

    Article  MathSciNet  Google Scholar 

  31. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(3), 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vazirani, V.V., Yannakakis, M.: Pfaffian orientations, 0/1 permanents, and even cycles in directed graphs. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 667–681. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  33. Weimann, O., Yuster, R.: Computing the girth of a planar graph in O(n logn) time. SIAM Journal on Discrete Math. 24(2), 609–616 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM Journal on Discrete Math. 10(2), 209–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, HC., Lu, HI. (2011). Computing the Girth of a Planar Graph in Linear Time. In: Fu, B., Du, DZ. (eds) Computing and Combinatorics. COCOON 2011. Lecture Notes in Computer Science, vol 6842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22685-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22685-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22684-7

  • Online ISBN: 978-3-642-22685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics