Abstract
The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n 5/4logn) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(nlog2 n). Weimann and Yuster further reduced the running time to O(nlogn). In this paper, we solve the problem in O(n) time.
See [9] for a full version of this extended abstract.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Yuster, R., Zwick, U.: Color–coding. JACM 42(4), 844–856 (1995)
Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)
Bollobás, B.: Chromatic number, girth and maximal degree. Discrete Math. 24, 311–314 (1978)
Borradaile, G., Klein, P.N.: An O(nlogn) algorithm for maximum st-flow in a directed planar graph. JACM 56(2), 9.1–9.30 (2009)
Boyer, J.M., Myrvold, W.J.: Stop minding your P’s and Q’s: A simplified planar embedding algorithm. In: SODA, pp. 140–146 (1999)
Chalermsook, P., Fakcharoenphol, J., Nanongkai, D.: A deterministic near-linear time algorithm for finding minimum cuts in planar graphs. In: SODA, pp. 828–829 (2004)
Chandran, L.S., Subramanian, C.R.: Girth and treewidth. Journal of Combinatorial Theory, Series B 93(1), 23–32 (2005)
Chang, H.-C., Lu, H.-I.: Computing the girth of a planar graph in linear time (2011), http://arxiv.org/abs/1104.4892
Cook, R.J.: Chromatic number and girth. Periodica Mathematica Hungarica 6, 103–107 (1975)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)
Diestel, R.: Graph Theory, 2nd edn. Springer, Heidelberg (2000)
Djidjev, H.N.: A faster algorithm for computing the girth of planar and bounded genus graphs. ACM Transactions on Algorithms 7(1), 3.1–3.16 (2010)
Dorn, F.: Planar subgraph isomorphism revisited. In: STACS, pp. 263–274 (2010)
Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3(3), 1–27 (1999)
Erdős, P.: Graph theory and probability. Canadian Journal of Math. 11, 34–38 (1959)
Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In: SODA, pp. 794–804 (2010)
Goodrich, M.T.: Planar separators and parallel polygon triangulation. Journal of Computer and System Sciences 51(3), 374–389 (1995)
Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed graph. Journal of Algorithms 17(3), 424–446 (1994)
Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)
Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved minimum cuts and maximum flows in undirected planar graphs. In: STOC, pp. 313–322 (2011), http://portal.acm.org/citation.cfm?doid=1993636.1993679
Karger, D.R.: Minimum cuts in near-linear time. JACM 47(1), 46–76 (2000)
Karger, D.R., Stein, C.: A new approach to the minimum cut problem. JACM 43(4), 601–640 (1996)
Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA, pp. 146–155 (2005)
Lingas, A., Lundell, E.-M.: Efficient approximation algorithms for shortest cycles in undirected graphs. Information Processing Letters 109(10), 493–498 (2009)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Math. 36(2), 177–189 (1979)
Lovász, L.: On chromatic number of finite set systems. Acta Mathematica Academiae Scientiarum Hungaricae 19, 59–67 (1968)
Monien, B.: The complexity of determining a shortest cycle of even length. Computing 31(4), 355–369 (1983)
Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B 36(1), 49–64 (1984)
Shih, W.-K., Wu, S., Kuo, Y.-S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Transactions on Computers 39(5), 694–697 (1990)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(3), 362–391 (1983)
Vazirani, V.V., Yannakakis, M.: Pfaffian orientations, 0/1 permanents, and even cycles in directed graphs. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 667–681. Springer, Heidelberg (1988)
Weimann, O., Yuster, R.: Computing the girth of a planar graph in O(n logn) time. SIAM Journal on Discrete Math. 24(2), 609–616 (2010)
Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM Journal on Discrete Math. 10(2), 209–222 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chang, HC., Lu, HI. (2011). Computing the Girth of a Planar Graph in Linear Time. In: Fu, B., Du, DZ. (eds) Computing and Combinatorics. COCOON 2011. Lecture Notes in Computer Science, vol 6842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22685-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-22685-4_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22684-7
Online ISBN: 978-3-642-22685-4
eBook Packages: Computer ScienceComputer Science (R0)