Skip to main content

FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time

  • Conference paper
Computing and Combinatorics (COCOON 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6842))

Included in the following conference series:

Abstract

In computational phylogenetics, supertree methods provide a way to reconstruct larger clades of the Tree of Life. The supertree problem can be formalized in different ways, to cope with contradictory information in the input. In particular, there exist methods based on encoding the input trees in a matrix, and methods based on finding minimum cuts in some graph. Matrix representation methods compute supertrees of superior quality, but the underlying optimization problems are computationally hard. In contrast, graph-based methods have polynomial running time, but supertrees are inferior in quality.

In this paper, we present a novel approach for the computation of supertrees called FlipCut supertree. Our method combines the computation of minimum cuts from graph-based methods with a matrix representation method, namely Minimum Flip Supertrees. Here, the input trees are encoded in a 0/1/?-matrix. We present a heuristic to search for a minimum set of 0/1-flips such that the resulting matrix admits a directed perfect phylogeny. We then extend our approach by using edge weights to weight the columns of the 0/1/?-matrix.

In our evaluation, we show that our method is extremely swift in practice, and orders of magnitude faster than the runner up. Concerning supertree quality, our method is sometimes on par with the “gold standard” Matrix Representation with Parsimony.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41(1), 3–10 (1992)

    Article  Google Scholar 

  3. Brinkmeyer, M., Griebel, T., Böcker, S.: Polynomial supertree methods revisited. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 183–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Chen, D., Eulenstein, O., Fernández-Baca, D., Burleigh, J.G.: Improved heuristics for minimum-flip supertree construction. Evol. Bioinform. Online 2, 391–400 (2006)

    Google Scholar 

  5. Chen, D., Eulenstein, O., Fernández-Baca, D., Sanderson, M.: Minimum-flip supertrees: complexity and algorithms. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(2), 165–173 (2006)

    Article  Google Scholar 

  6. Chimani, M., Rahmann, S., Böcker, S.: Exact ILP solutions for phylogenetic minimum flip problems. In: Proc. of ACM Conf. on Bioinformatics and Computational Biology (ACM-BCB 2010), pp. 147–153 (2010)

    Google Scholar 

  7. Day, W., Johnson, D., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Math. Biosci. 81, 33–42 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  9. Griebel, T., Brinkmeyer, M., Böcker, S.: EPoS: a modular software framework for phylogenetic analysis. Bioinformatics 24(20), 2399–2400 (2008)

    Article  Google Scholar 

  10. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hao, J.X., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed graph. J. Algorithms 17(3), 424–446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 537–552. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. Comput. 33(3), 590–607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Mol. Phylogenet. Evol. 1(1), 53–58 (1992)

    Article  Google Scholar 

  15. Ranwez, V., Berry, V., Criscuolo, A., Fabre, P.-H., Guillemot, S., Scornavacca, C., Douzery, E.J.P.: PhySIC: a veto supertree method with desirable properties. Syst. Biol. 56(5), 798–817 (2007)

    Article  Google Scholar 

  16. Ranwez, V., Criscuolo, A., Douzery, E.J.P.: Supertriplets: a triplet-based supertree approach to phylogenomics. Bioinformatics 26(12), i115–i123 (2010)

    Article  Google Scholar 

  17. Scornavacca, C., Berry, V., Lefort, V., Douzery, E.J.P., Ranwez, V.: PhySIC_IST: cleaning source trees to infer more informative supertrees. BMC Bioinformatics 9, 413 (2008)

    Article  Google Scholar 

  18. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl. Math. 105(1-3), 147–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Swafford, D., Paup*: Phylogenetic analysis using parsimony (*and other methods), Version 4 (2002)

    Google Scholar 

  20. Swenson, M.S., Barbancon, F., Warnow, T., Linder, C.R.: A simulation study comparing supertree and combined analysis methods using SMIDGen. Algorithms Mol. Biol. 5(1), 8 (2010)

    Article  Google Scholar 

  21. Willson, S.J.: Constructing rooted supertrees using distances. Bull. Math. Biol. 66(6), 1755–1783 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brinkmeyer, M., Griebel, T., Böcker, S. (2011). FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time. In: Fu, B., Du, DZ. (eds) Computing and Combinatorics. COCOON 2011. Lecture Notes in Computer Science, vol 6842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22685-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22685-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22684-7

  • Online ISBN: 978-3-642-22685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics