Skip to main content

On Parameterized Independent Feedback Vertex Set

  • Conference paper
Computing and Combinatorics (COCOON 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6842))

Included in the following conference series:

Abstract

We investigate a generalization of the classical Feedback Vertex Set (FVS) problem from the point of view of parameterized algorithms. Independent Feedback Vertex Set (IFVS) is the “independent” variant of the FVS problem and is defined as follows: given a graph G and an integer k, decide whether there exists F ⊆ V(G), |F| ≤ k, such that G[V(G) ∖ F] is a forest and G[F] is an independent set; the parameter is k. Note that the similarly parameterized versions of the FVS problem — where there is no restriction on the graph G[F] — and its connected variant CFVS — where G[F] is required to be connected — have been extensively studied in the literature. The FVS problem easily reduces to the IFVS problem in a manner that preserves the solution size, and so any algorithmic result for IFVS directly carries over to FVSA. We show that IFVS can be solved in time O(5k n O(1)) time where n is the number of vertices in the input graph G, and obtain a cubic (O(k 3)) kernel for the problem. Note the contrast with the CFVS problem, which does not admit a polynomial kernel unless CoNP ⊆ NP/Poly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving max-r-sat above a tight lower bound. In: SODA, pp. 511–517 (2010)

    Google Scholar 

  2. Bodlaender, H.L.: On disjoint cycles. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 230–238. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  3. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: Meta kernelization. In: FOCS, pp. 629–638 (2009)

    Google Scholar 

  5. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved Algorithms for Feedback Vertex Set Problems. Journal of Computer and System Sciences 74(7), 1188–1198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. Journal of the ACM 55(5), 21:1–21:19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  10. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of nemhauser and trotter’s local optimization theorem. In: STACS, pp. 409–420 (2009)

    Google Scholar 

  11. Festa, P., Pardalos, P.M., Resende, M.G.: Feedback set problems. In: Handbook of Combinatorial Optimization, pp. 209–258. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden minors: Approximation and Kernelization. In: Proc. of the 28th Symposium on Theoretical Aspects of Computer Science, STACS (to appear, 2011), http://arxiv.org/abs/1010.1365

  14. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA, pp. 503–510 (2010)

    Google Scholar 

  16. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  18. Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above or below tight bounds. J. Comput. Syst. Sci. 77(2), 422–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kratsch, S.: Polynomial kernelizations for MIN F\(^{\mbox{+}}\) Pi\(_{\mbox{1}}\) and MAX NP. In: STACS, pp. 601–612 (2009)

    Google Scholar 

  20. Lokshtanov, D., Mnich, M., Saurabh, S.: Linear kernel for planar connected dominating set. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 281–290. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Marx, D., O’Sullivan, B., Razgon, I.: Treewidth reduction for constrained separation and bipartization problems. In: STACS, pp. 561–572 (2010)

    Google Scholar 

  22. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 269–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  24. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 115–119. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Chapter  Google Scholar 

  26. Thomassé, S.: A 4k 2 kernel for feedback vertex set. ACM Transactions on Algorithms 6, 32:1–32:8 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Misra, N., Philip, G., Raman, V., Saurabh, S. (2011). On Parameterized Independent Feedback Vertex Set. In: Fu, B., Du, DZ. (eds) Computing and Combinatorics. COCOON 2011. Lecture Notes in Computer Science, vol 6842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22685-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22685-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22684-7

  • Online ISBN: 978-3-642-22685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics