Skip to main content

Review on VLSI Architectures for Optical OFDM Receivers

  • Conference paper
Advances in Computing and Communications (ACC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 190))

Included in the following conference series:

  • 1811 Accesses

Abstract

Orthogonal Frequency Division Multiplexing (OFDM) is one of the most recent modulation techniques that enable us to reach higher data rates, both in wired and wireless communication systems. Recently, it has proved more efficient in optical networks. This paper gives a comparison review of existing OFDM receiver architectures and their modes of operation. Also, most of the OFDM systems used Fourier transform for modulation and demodulation. The performance of Fourier Transform algorithm with other algorithm (Hartley Transform) will be explored. This detailed review and performance analysis of various receiver architectures will provide guidelines for an individual to design an OFDM receiver and the important parameters to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armstrong, J., IEEE: OFDM for Optical Communication. Journal of Lightwave Technology 27(3) (February 1, 2009)

    Google Scholar 

  2. Wei, W., Wang, C., Yu, J., Cvijetic, N., Wang, T.: Optical Orthogonal Frequency Division Multiple Access Networking for the Future Internet. Journal of Optical. Communication Networks 1(2) (July 2009)

    Google Scholar 

  3. Carruthers, J.B., Kahn, J.M.: Multiple-subcarrier modulation for nondirected wireless infrared communication. IEEE J. Sel. Areas Commun. 14, 538–546 (1996)

    Article  Google Scholar 

  4. Gonzalez, O., Perez-Jimenez, R., Rodriguez, S., Rabadan, J., Ayala, A.: OFDM over indoor wireless optical channel. In: IEE Proc.—Optoelectronics, vol. 152, pp. 199–204 (2005)

    Google Scholar 

  5. Armstrong, J., Lowery, A.J.: Power efficient optical OFDM. Electron.Lett. 42, 370–371 (2006)

    Article  Google Scholar 

  6. Armstrong, J., Schmidt, B.J.C.: Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. IEEE Commun. Lett. 12, 343–345 (2008)

    Article  Google Scholar 

  7. Li, X., Mardling, R., Armstrong, J.: Channel capacity of IM/DD optical communication systems and of ACO-OFDM. In: Proc. ICC 2007, pp. 2128–2133 (2007)

    Google Scholar 

  8. Cvijetic, N., Qian, D., Wang, T.: 10 Gb/s free-space optical transmission using OFDM. Presented at the Proc. OFC/NFOEC 2008, San Diego, CA (2008), Paper, OTHD2

    Google Scholar 

  9. Lee, S.C.J., Breyer, F., Randel, S., Schuster, M., Zeng, J., Huiskens, F., van den Boom, H.P.A., Koonen, A.M.J., Hanik, N.: 24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation. Presented at the Proc. of C/NFOEC 2007, Anaheim, CA, March 25-29 (2007), Paper PDP6.

    Google Scholar 

  10. Lee, S.C.J., Breyer, F., Randel, S., Ziemann, O., van den Boom, H.P.A., Koonen, A.M.J.: Low-cost and robust 1-Gbit/s plastic optical fiber link based on light-emitting diode technology. Presented at the Proc. of C/NFOEC 2008, San Diego, CA (2008), Paper, OWB3

    Google Scholar 

  11. Lowery, A.J., Armstrong, J.: Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems. Opt. Expr. 14, 2079–2084 (2006)

    Article  Google Scholar 

  12. Shieh, W., Athaudage, C.: Coherent optical orthogonal frequency division multiplexing. Electron. Lett. 42, 587–588 (2006)

    Article  Google Scholar 

  13. Jansen, S.L., Morita, I., Takeda, N., Tanaka, H.: 20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation. Presented at the Proc. OFC/NFOEC 2007, Anaheim, CA, March 25-29 (2007), Paper PDP15

    Google Scholar 

  14. Jansen, S.L., Morita, I., Schenk, T.C.W., van den Borne, D., Tanaka, H.: Optical OFDM—A candidate for future long-haul optical transmission systems. Presented at the Proc. OFC/NFOEC 2008, San Diego, CA (2008), Paper, OMU3

    Google Scholar 

  15. Molisch, A.F., Win, M.Z.: MIMO systems with antenna selection. IEEE Microw. Mag. 5, 46–56 (2004)

    Article  Google Scholar 

  16. Paulraj, A.J., Gore, D.A., Nabar, R.U., Bolcskei, H.: An overview of MIMO communications—A key to gigabit wireless. Proc. IEEE 92, 198–218 (2004)

    Article  Google Scholar 

  17. Lau, A.P.T., Lei, X., Ting, W.: Performance of receivers and detection algorithms for modal multiplexing in multimode fiber systems. IEEE Photon. Technol. Lett. 19, 1087–1089 (2007)

    Article  Google Scholar 

  18. Jansen, S.L., Morita, I., Tanaka, H.: 16 x 52.5-Gb/s, 50-GHz spaced, POLYMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing. Presented at the Proc. ECOC 2007 (2007), Paper PD1.3

    Google Scholar 

  19. Lin, H.-L., Lin, H., Chang, R.C., Chen, S.-W., Liao, C.-Y., Wu, C.-H., National Chung Hsing University, Taiwan: A High-Speed Highly Pipelined 2n-Point FFT Architecture for a Dual OFDM Processor. In: MIXDES 2006, Gdynia, Poland, June 22-24 (2006)

    Google Scholar 

  20. Chitra, M.P., Srivatsa, S.K.: Design of low power mixed radix FFT processor for MIMO OFDM systems. In: 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies (2009)

    Google Scholar 

  21. Simon Sherratt, R., IEEE, Cadenas, O.: A Double Data Rate Architecture for OFDM Based Wireless Consumer Devices. IEEE Transaction on Consumer Electronics 56, 23–26 (2010)

    Article  Google Scholar 

  22. Schmidt, B.J.C., Zan, Z., Du, L.B., Lowery, A.J., IEEE: 120 Gbit/s Over 500-km Using Single-Band Polarization-Multiplexed Self- Coherent Optical OFDM. Journal of Lightwave Technology 28(4) (February 15, 2010)

    Google Scholar 

  23. Tang, Y., Shieh, W., IEEE: Coherent Optical OFDM Transmission Up to 1 Tb/s per Channel. Journal of Lightwave Technology 27(16) (August 15, 2009)

    Google Scholar 

  24. Moreolo, M.S., Munoz, R., Junyent, G.: Novel Power Efficient Optical OFDM Based on Hartley Transform for Intensity-Modulated Direct-Detection Systems. Journal of Lightwave Technology 28(5) (March 1, 2010)

    Google Scholar 

  25. Sorensen, H.V., Jones, D.L., Burrus, C.S., Heideman, M.T.: On computing the discrete Hartley transform. IEEE Trans. Acoust,Speech, Signal Process SP-33(5), 1231–1238 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parthasarathy, M.K., Govindarajan, K., Gunaraj, G., Prabha, S.L. (2011). Review on VLSI Architectures for Optical OFDM Receivers. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22709-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22709-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22708-0

  • Online ISBN: 978-3-642-22709-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics