Skip to main content

Self-organizing MAC Protocol Switching for Performance Adaptation in Wireless Sensor Networks

  • Conference paper
Advances in Computing and Communications (ACC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 192))

Included in the following conference series:

  • 1599 Accesses

Abstract

This paper presents a distributed MAC protocol switching mechanism for maximizing network throughput in the presence of traffic and topology heterogeneity. The key idea behind dynamic MAC switching is for each node to use its local topology and traffic density information to decide the most suitable MAC protocol that can maximize the MAC layer throughout in the neighborhood. A formal MAC switching rule is developed using analytical formulation of the MAC throughput available in the literature. NS2 based simulation experiments demonstrate that with the proposed MAC switching strategy, nodes in a mesh network are able to achieve maximum MAC throughput by adaptively choosing the appropriate MAC protocol in the presence of heterogeneity in terms of data rate and node population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balakrishnan, H.: Opportunities and challenges in high-rate wireless sensor networking. In: 29th Annual IEEE International Conference on Local Computer Networks (November 2004)

    Google Scholar 

  2. Kleinrock, L., Tobagi, F.: Carrier Sense Multiple Access for Packet Switched Radio Channels. In: International Conference on Communications, Minneapolis, Minnesota, pp. 21B-1–21B-7 (June 1974)

    Google Scholar 

  3. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless Sensor Networks. In: INFOCOM, pp. 1567–1576 (June 2002)

    Google Scholar 

  4. Dam, T., Langendoen, K.: An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks. In: 1st ACM International Conference on Embedded Networked Sensor Systems, pp. 171–180 (November 2003)

    Google Scholar 

  5. Chen, Z., Khokhar, A.: Self organization and Energy Efficient TDMA MAC Protocol by Wake up for Wireless Sensor Networks. In: 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks 2004 (IEEE SECON 2004), pp. 335–341 ( October 2004)

    Google Scholar 

  6. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks. In: International Conference on Embedded Networked Sensor Systems, pp. 181–192 (November 2003)

    Google Scholar 

  7. Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad-hoc Networks. In: The 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Florence, Italy, May 22-25 (2006)

    Google Scholar 

  8. Ahn, G.-S., Miluzzo, E., Campbell, A.T., Hong, S.G., Cuomo, F.: Funneling-MAC: A Localized, Sink-Oriented MAC For Boosting Fidelity in Sensor Networks. In: Fourth ACM Conference on Embedded Networked Sensor Systems (SenSys 2006), Boulder, Colorado, USA (November 2006)

    Google Scholar 

  9. Funneling-MAC Technical Report, http://www.cs.dartmouth.edu/~sensorlab/funneling-mac/TAPTR-2006-08-003.pdf

  10. Sudarev, J.V., White, L.B., Perreau, S.: Performance Analysis of 802.11 CSMA/CA for Infrastructure Networks under Finite Load Conditions. In: The 14th IEEE Workshop on Local and Metropolitan Area Networks, 2005, LANMAN 2005 (September 2005)

    Google Scholar 

  11. Chung, M.Y., Jung, M.-H., Lee, T.-J., Lee, Y.: Performance Analysis of HomePlug 1.0 MAC With CSMA/CA. IEEE Journal on Selected Areas in Communications 24, 1411–1420 (2006)

    Article  Google Scholar 

  12. Lee, W., Wang, C., Sohraby, K.: On Use of Traditional M/G/1 Model for IEEE 802.11 DCF in Unsaturated Traffic Conditions. In: IEEE Wireless Communications and Networking Conference (WCNC 2006), Las Vegas, Nevada, pp. 1933–1937 (April 2006)

    Google Scholar 

  13. Barowski, Y., Biaz, S.: The Performance Analysis of IEEE 802.11 Under Unsaturated Traffic Conditions (August 2004), ftp://ftp.eng.auburn.edu/pub/techreports/csse/04/CSSE04-08.pdf

  14. Bianchi, G.: Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications 18, 535–547 (2000)

    Article  Google Scholar 

  15. Tickoo, O., Sikdar, B.: A queueing model for finite load IEEE 802.11 random access MAC. In: IEEE International Conference of Communication (ICC), pp. 175–179 (2004)

    Google Scholar 

  16. The network simulator: NS-2, http://www.isi.edu/nsnam/ns

  17. Yu, F., Wu, T., Biswas, S.: Towards In-Band Self-Organization in Energy-Efficient MAC Protocols for Sensor Networks. IEEE Transaction of Mobile Computing (accepted) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, F., Biswas, S. (2011). Self-organizing MAC Protocol Switching for Performance Adaptation in Wireless Sensor Networks. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22720-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22720-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22719-6

  • Online ISBN: 978-3-642-22720-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics