Skip to main content

Statistical Modeling of Long-Range Drift in Visual Odometry

  • Conference paper
Computer Vision – ACCV 2010 Workshops (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6469))

Included in the following conference series:

Abstract

An intrinsic problem of visual odometry is its drift in long-range navigation. The drift is caused by error accumulation, as visual odometry is based on relative measurements. The paper reviews algorithms that adopt various methods to minimize this drift. However, as far as we know, no work has been done to statistically model and analyze the intrinsic properties of this drift. Moreover, the quantification of drift using offset ratio has its drawbacks. This paper models the drift as a combination of wide-band noise and a first-order Gauss-Markov process, and analyzes it using Allan variance. The model’s parameters are identified by a statistical method. A novel drift quantification method using Monte Carlo simulation is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, D.W.: Statistics of atomic frequency standards. Proceedings of the IEEE 54(2), 221–230 (1966)

    Article  Google Scholar 

  2. Badino, H.: Binocular ego-motion estimation for automotive applications. PhD thesis. Frankfurt/Main University (2008)

    Google Scholar 

  3. Calvetti, D.: A stochastic roundoff error analysis for the convolution. Mathematics of Computation 59, 569–582 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, Y., Maimone, M.W., Matthies, L.: Visual odometry on the Mars exploration rovers. IEEE Robotics Automation Magazine 13(2), 54–62 (2006)

    Article  Google Scholar 

  5. Comport, A.I., Malis, E., Rives, P.: Real-time quadrifocal visual odometry. Int. J. Robotics Research 29, 245–266 (2010)

    Article  Google Scholar 

  6. Corke, P., Detwiler, C., Dunbabin, M., Hamilton, M., Rus, D., Vasilescu, L.: Experiments with underwater robot localization and tracking. In: IEEE Int. Conf. Robotics Automation, pp. 4556–4561 (2007)

    Google Scholar 

  7. Flenniken, W.S.: Modeling inertial measurement units and analyzing the effect of their errors in navigation applications. Master thesis, University of Auburn (2005)

    Google Scholar 

  8. IEEE standard specification format guide and test procedure for single-axis laser gyros. IEEE Std 647TM − 2006 (2006)

    Google Scholar 

  9. Kelly, A.: Linearized error propagation in odometry. The Int. J. of Robotics Research 23, 179–218 (2004)

    Article  Google Scholar 

  10. Kelly, J., Sukhatme, G.S.: An experimental study of aerial stereo visual odometry. In: IFAC Symp. Intelligent Autonomous Vehicles (2007)

    Google Scholar 

  11. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE Conf. Computer Vision Pattern Recognition, vol. 1, pp. 652–659 (2004)

    Google Scholar 

  12. Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Stereo ego-motion improvements for robust rover navigation. In: IEEE Int. Conf. Robotics Automation, pp. 1099–1104 (2001)

    Google Scholar 

  13. Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans. Robotics 24, 1015–1026 (2008)

    Article  Google Scholar 

  14. Sünderhauf, N., Protzel, P.: Towards using sparse bundle adjustment for robust stereo odometry in outdoor terrain. Towards Autonomous Robotic Systems, 206–213 (2006)

    Google Scholar 

  15. Wall, J.H., Bevly, D.M.: Characterization of inertial sensor measurements for navigation performance analysis. In: Proc. of ION GNSS, Long Beach, CA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, R., Klette, R., Wang, S. (2011). Statistical Modeling of Long-Range Drift in Visual Odometry. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22819-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22819-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22818-6

  • Online ISBN: 978-3-642-22819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics