Skip to main content

On Convergence Theorems of Set-Valued Choquet Integrals

  • Conference paper
Nonlinear Mathematics for Uncertainty and its Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 100))

Abstract

The article aims at discussing the Choquet integrals of set-valued random variables with respect to capacities. We firstly state representation theorems and subadditive property of set-valued Choquet integrals. Then we mainly prove Fatou’s Lemmas, Lesbesgue dominated convergence theorem and monotone convergence theorems of set-valued Choquet integrals under the weaker conditions than that in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allais, M.: Le comportement de l’homme rationnel devant le risque: Critique des postulates et axiomes de l’ecole americaine. Econometrica 21, 503–546 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aumann, R.J.: Integrals of set-valued functions. J. Math. Appl. 12, 1–12 (1965)

    MathSciNet  MATH  Google Scholar 

  3. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)

    MathSciNet  Google Scholar 

  4. Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic Publishers, Boston (1994)

    MATH  Google Scholar 

  5. Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Quart. J. Econom. 75, 643–669 (1961)

    Article  Google Scholar 

  6. Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multiva. Anal. 7, 149–182 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, L.C., Kwon, J.S.: On the representation of Choquet integrals of set-valued functions, and null sets. Fuzzy Sets and Systems 112, 233–239 (2000)

    Article  MathSciNet  Google Scholar 

  8. Jiang, L.C., Kim, Y.K., Jeon, J.D.: On set-valued Choquet integrals and convergence theorems. Advanced Studies in Contemporary Mathematics 6, 63–76 (2003)

    Google Scholar 

  9. Jiang, L.C., Kim, Y.K., Jeon, J.D.: On set-valued Choquet integrals and convergence theorems (II). Bull. Korean Math. Soc. 40, 139–147 (2003)

    Article  MathSciNet  Google Scholar 

  10. Klein, E., Thompson, A.: Theory of Correspondence. Wiley, New York (1984)

    Google Scholar 

  11. Li, S., Ogura, Y., Kreinovich, V.: Limit theorems and applications of set-valued and fuzzy set-valued random variables. Kluwer Academic Publishers, Netherlands (2002)

    Google Scholar 

  12. Pap, E.: Null-Additive Set-Functions. Kluwer, Dordrecht (1994)

    Google Scholar 

  13. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Z., Yan, J.A.: A selective overview of applications of Choquet integrals (2006) (manuscript)

    Google Scholar 

  15. Zhang, D.L., Guo, C.M., Liu, S.Y.: Set-valued Choquet integrals revisited. Fuzzy Sets and Systems 147, 475–485 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Li, S. (2011). On Convergence Theorems of Set-Valued Choquet Integrals. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds) Nonlinear Mathematics for Uncertainty and its Applications. Advances in Intelligent and Soft Computing, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22833-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22833-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22832-2

  • Online ISBN: 978-3-642-22833-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics