Abstract
In this paper, the pricing formulas of the compound options under the fractional Brownian motion are given by the method of partial differential equation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bender, C., Sottinen, T., Valkeila, E.: Arbitrage with fractional Brownian Motion. Theory of Stochastics Process 12, 3–4 (2006)
Cheridito, P.: Arbitrage in fractional Brownian Motion models. Finance and Stochastics 7, 533–553 (2003)
Fischer, B., Myron, S.: The pricing of option and corporate liabilities. J. Political Economy 81, 637–654 (1973)
Guasoni, P.: No arbitrage under transaction costs with fractional Brownian motion and beyond. Mathematical Finance 16, 569–582 (2006)
Hu, Y.Z., Oksendal, B.: Fractional white noise calculus and application to finance. infinite dimensional analysis. Quantum Probability and Related Topics 6, 1–32 (2003)
Jiang, L.S.: Mathematical Modeling and Methods of Option Pricing. World Scientific Publishing Company, Singapore (2005)
Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS 26, 115-118 (1940)
Louis, B.: Theorie de la speculation. Annales Scientifiques de l’Ecole Normale Superieure 17, 21–86 (1900)
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions.Fractional Noises and Applications. Siam Review 10, 422–437 (1968)
Merton, R.C.: Theory of rational option pricing, Bell. J. Econ. & Manag. Sci. 4, 141–183 (1973)
Necula, C.: Option pricing in a fractional Brownian Motion environment. Draft. Academy of Economic Studies 12, 1–18 (2002)
Nualart, D.: Stochastic Integration with Respect to Fractional Brownian Motion and Applications (2004) (preprint)
Nualart, D., Rascanu, A.: Differential equations driven by fractional Brownian Motion. Collectanea Mathematica 53(1), 55–81 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, C., Zhang, J., Tao, D. (2011). Pricing Formulas of Compound Options under the Fractional Brownian Motion. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds) Nonlinear Mathematics for Uncertainty and its Applications. Advances in Intelligent and Soft Computing, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22833-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-22833-9_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22832-2
Online ISBN: 978-3-642-22833-9
eBook Packages: EngineeringEngineering (R0)