Skip to main content

Knightian Uncertainty Based Option Pricing with Jump Volatility

  • Conference paper
Nonlinear Mathematics for Uncertainty and its Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 100))

  • 1931 Accesses

Abstract

In the viewpoint of Knightian uncertainty, this paper deals with option pricing with jump volatility. First, we prove that the jump volatility model is a Knightian uncertainty problem; then we identify the factors which reflect the Knighitan uncertainty based on k-Ignorance. We find that the option price under Knightian uncertainty is not unique but an interval. Through theoretical analysis and simulation, we conclude that the intensity of Poisson, the jump size, and the maturity date determine the price interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bewley, T.: Knightian Decision Theory: Part I. Cowles Foundation Discussion Paper No. 807. Yale University, Massachusetts (1986)

    Google Scholar 

  2. Black, F., Scholes, M.: The valuation of option and corporate liabilities. Journal of Political Economy 81, 637–654 (1973)

    Article  Google Scholar 

  3. Chen, Z., Epstein, L.G.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70, 1403–1443 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Epstein, L.G., Wang, T.: Intertermporal asset pricing under knightian uncertainty. Econometrica 62, 283–322 (1994)

    Article  MATH  Google Scholar 

  5. Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. Journal of Finance 42, 281–300 (1987)

    Article  Google Scholar 

  6. Gilboa, I.: Expected utility theory with purely subjective non-additive probabilities. Journal of Mathematical Economics 16, 65–88 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 18, 141–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Merton, R.C.: Theory of rational option pricing. Bell Journal of Economics and Management Science 4(1), 141–183 (1973)

    Article  MathSciNet  Google Scholar 

  9. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  10. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shreve, S.E.: Stochastic Calculus for Finance II: Continuous-time Models. Springer, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, M., Han, L. (2011). Knightian Uncertainty Based Option Pricing with Jump Volatility. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds) Nonlinear Mathematics for Uncertainty and its Applications. Advances in Intelligent and Soft Computing, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22833-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22833-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22832-2

  • Online ISBN: 978-3-642-22833-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics