Skip to main content

Globally Convergent Inexact Smoothing Newton Method for SOCCP

  • Conference paper
Nonlinear Mathematics for Uncertainty and its Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 100))

  • 1901 Accesses

Abstract

An inexact smoothing Newton method for solving second-order cone complementarity problems (SOCCP) is proposed. In each iteration the corresponding linear system is solved only approximately. Under mild assumptions, it is proved that the proposed method has global convergence and local superlinear convergence properties. Preliminary numerical results indicate that the method is effective for large-scale SOCCP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, J.S., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cones. Mathematical Programming 101, 95–117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Mathematical Programming 76, 493–512 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM Journal on Optimization 12, 436–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM Journal on Optimization 15, 593–615 (2004)

    Article  MathSciNet  Google Scholar 

  5. Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM Journal on Optimization 20, 297–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra and its Applications 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rui, S.P., Xu, C.X.: Inexact non-interior continuation method for solving large-scale monotone SDCP. Applied Mathematics and Computation 215, 2521–2527 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rui, S.P., Xu, C.X.: A smoothing inexact Newton method for nonlinear complementarity problems. Journal of Computational and Applied Mathematics 233, 2332–2338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, D., Sun, J.: Strong semismoothness of the fischer-burmeister SDC and SOC complementarity functins. Mathematical Programming 103, 575-581 (2005)

    Google Scholar 

  10. Yoshise, A.: Interior point trajectories and a homogeneous model for nonliear complementarity problems over symmetric cones. SIAM Journal on Optimization 17, 1129–1153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, X.S., Liu, S.Y.: A smoothing method for second order cone complementarity problem. Journal of Computational and Applied Mathematics 228, 83–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Rui, SP. (2011). Globally Convergent Inexact Smoothing Newton Method for SOCCP. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds) Nonlinear Mathematics for Uncertainty and its Applications. Advances in Intelligent and Soft Computing, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22833-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22833-9_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22832-2

  • Online ISBN: 978-3-642-22833-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics