Skip to main content

A New Fuzzy Linear Programming Model and Its Applications

  • Conference paper
Nonlinear Mathematics for Uncertainty and its Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 100))

  • 1950 Accesses

Abstract

It is difficult to determine precise values for the parameters in the real world problems. To model the uncertainty, a new fuzzy linear programming model, called β-tolerance linear programming model, is developed in this paper. When the fuzzy numbers are all triangle fuzzy numbers, the solutions, which propose a selection interval for the decision maker, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buckley, J.J.: Fuzzy programming and Pareto optimal set. Fuzzy Sets and Systems 10, 57–63 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, X., Teo, K.L., Yang, X., Zhou, X.Y.: Portfolio optimization under a Minimax rule. Management Science 16, 957–972 (2000)

    Article  Google Scholar 

  3. Chen, L.H., Lu, H.W.: An approximate approach for ranking fuzzy numbers based on left and right dominance. Computers Math. Applic. 41, 1589–1602 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L.H., Lu, H.W.: The preference order of fuzzy numbers. Computers and Mathematics with Applications 44, 1455–1465 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu, T.C., Tsao, C.T.: Ranking fuzzy numbers with an area between the centroid point and original point. Computers and Mathematics with Applications 43, 111–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dehghan, M., Hashemi, B.: Solution for the fully fuzzy linear systems using the decomposition procedure. Applied Mathematics and Computation 182, 1568–1580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Hashemi, B., Ghatee, R.: Computational methods for solving fully fuzzy linear systems. Applied Mathematics and Computation 179, 328–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Hashemi, B., Ghatee, R.: Solution of the fully fuzzy linear systems using iterative techniques. Chaos Solutions and Fractals 34, 316–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubois, D., Prade, H.: Fuzzy Sets and Systems: theory and applications. Academic Press, London (1980)

    MATH  Google Scholar 

  10. Fang, S.C., Hu, C.F., Wang, H.F., Wu, S.Y.: Linear programming with fuzzy coefficients in constraints. Computers and mathematics with Applications 37, 63–76 (1993)

    Article  MathSciNet  Google Scholar 

  11. Liu, H.K., Wu, B., Liu, M.L.: Investors preference order of fuzzy numbers. Computers and Mathematics with Applications 55, 2623–2630 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hosseinzadeh Lotfi, F., Allahviranloo, T., Alimardani Jondabeh, M., Alizadeh, L.: Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Applied Mathematical Modeling 33, 3151–3156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Markowitz, H.: Portfolio selection. Journal of Finance 7, 77–97 (1952)

    Article  Google Scholar 

  14. Ramik, J., Rimanek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets and Systems 16, 21–29 (1989)

    MathSciNet  Google Scholar 

  15. Ramik, J., Rommelfanger, H.: A single- and multi-valued order on fuzzy numbers and its use in linear programming with fuzzy coefficients. Fuzzy Sets and Systems 57, 203–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, Z., Chen, J.: An interactive method for fuzzy multiple attribute group decision making. Information Sciences 177, 248–263 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yao, J.S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets and Systems 116, 275–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yong, D., Zhu, Z., Liu, Q.: Ranking fuzzy numbers with an area method using radius of gyration. Computers and Mathematics with Applications 51, 1127–1136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic, Norwell (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, HK., Wu, B. (2011). A New Fuzzy Linear Programming Model and Its Applications. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds) Nonlinear Mathematics for Uncertainty and its Applications. Advances in Intelligent and Soft Computing, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22833-9_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22833-9_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22832-2

  • Online ISBN: 978-3-642-22833-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics