Skip to main content

Analysis of the Energy Conservation Aspects of a Mobile Context Broker

  • Conference paper
Book cover Smart Spaces and Next Generation Wired/Wireless Networking (ruSMART 2011, NEW2AN 2011)

Abstract

Mobile devices are increasingly becoming the main mean of interaction for inhabitants of ubiquitous computing environments. Pervasiveness of these devices as users’ personal gadgets and their high-tech capabilities allow capturing of broad contextual information about the physical environment, users social profile and preferences. These modern roles of mobile devices facilitate a number of user and environment related context consuming and producing applications to be hosted on these devices. But without a coordinating component on the mobile device these context consumers and providers are a potential burden on device resources, specifically the effect of uncoordinated computation and communication shortens the battery life. In this paper we briefly describe the concept of a Mobile Context Broker and focus on the energy conservation benefits gained through the context coordination facilities provided by the Mobile Context Broker executing on a smart mobile device. The reported results signify reduction in energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Web Services Brokered Notification (WS-BrokeredNotification), http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

  2. Common Object Request Broker Architecture, Version 3.1 (January 2008), http://www.omg.org/spec/CORBA/3.1

  3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software Architecture: A System of Patterns, vol. 1. John Wiley & Sons Ltd., West Sussex (1995)

    Google Scholar 

  4. Chen, H., Finin, T., Joshi, A.: An intelligent broker for context-aware systems. In: Adjunct Proceedings of Ubicomp 2003, pp. 183–184 (October 2003) (poster paper)

    Google Scholar 

  5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. Ph.D. thesis, University of California (2000)

    Google Scholar 

  6. Kiani, S.L., Knappmeyer, M., Baker, N., Moltchanov, B.: A federated broker architecture for large scale context dissemination. In: Proceedings of the 10th International Conference on Scalable Computing and Communications, Bradford (2010)

    Google Scholar 

  7. Kiani, S.L., Knappmeyer, M., Reetz, E.S., Baker, N.: Effect of caching in a broker based context provisioning system. In: Lukowicz, P., Kunze, K., Kortuem, G. (eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 108–121. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Knappmeyer, M., Tönjes, R., Baker, N.: Modular and extendible context provisioning for evolving mobile applications and services. In: 18th ICT Mobile Summit (2009)

    Google Scholar 

  9. Knappmeyer, M., Kiani, S.L., Frá, C., Moltchanov, B., Baker, N.: A Light-Weight Context Representation and Context Management Schema. In: Proceedings of IEEE International Symposium on Wireless Pervasive Computing (May 2010)

    Google Scholar 

  10. Moltchanov, B., Mannweiler, C., Simoes, J.: Context-awareness enabling new business models in smart spaces. In: Balandin, S., Dunaytsev, R., Koucheryavy, Y. (eds.) ruSMART/NEW2AN 2010. LNCS, vol. 6294, pp. 13–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Mrohs, B., Steglich, S., Aftelak, A., Klemettinen, M., Salo, J.T., Cordier, C., Carrez, F.: MobiLife Service Infrastructure and SPICE Architecture Principles, pp. 1–5 (September 2006)

    Google Scholar 

  12. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Proceedings of the 8th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES/ISSS 2010, pp. 105–114. ACM, New York (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiani, S.L., Moltchanov, B., Knappmeyer, M., Baker, N. (2011). Analysis of the Energy Conservation Aspects of a Mobile Context Broker. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds) Smart Spaces and Next Generation Wired/Wireless Networking. ruSMART NEW2AN 2011 2011. Lecture Notes in Computer Science, vol 6869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22875-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22875-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22874-2

  • Online ISBN: 978-3-642-22875-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics