Abstract
Recent theories of universal algorithmic intelligence, combined with the view that the world can be completely specified in mathematical terms, have led to claims about intelligence in any agent, including human beings. We discuss the validity of assumptions and claims made by theories of universally optimal intelligence in relation to their application in actual robots and intelligence tests. Our argument is based on an exposition of the requirements for knowledge of the world through observations. In particular, we will argue that the world can only be known through the application of rules to observations, and that beyond these rules no knowledge can be obtained about the origin of our observations. Furthermore, we expose a contradiction in the assumption that it is possible to fully formalize the world, as for example is done in digital physics, which can therefore not serve as the basis for any argument or proof about algorithmic intelligence that interacts with the world.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte für Mathematik und Physik 38, 173–198 (1931)
Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)
Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin (2004)
Kant, I.: Kritiek der reinen Vernunft. Johann Friedrich Hartknoch, Riga, Zweite Originalausgabe edition (1787)
Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)
Pape, L., Kok, A.: Real-world limits to algorithmic intelligence (2011), Online version: http://www.idsia.ch/~pape/papers/pape2011agilong.pdf
Descartes, R.: Principia Philosophiae. Louis Elzevir, Amsterdam (1644)
Schmidhuber, J.: A computer scientist’s view of life, the universe, and everything. In: Freksa, C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Science. LNCS, vol. 1337, pp. 201–288. Springer, Heidelberg (1997)
Schmidhuber, J.: Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4), 587–612 (2002)
Schmidhuber, J.: The Speed Prior: a new simplicity measure yielding near-optimal computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 216–228. Springer, Heidelberg (2002)
Schmidhuber, J.: Completely self-referential optimal reinforcement learners. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 223–233. Springer, Heidelberg (2005)
Schmidhuber, J.: Gödel machines: fully self-referential optimal universal self-improvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 199–226. Springer, Heidelberg (2006); Variant available as arXiv:cs.LO/0309048
Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–193 (2009)
Steunebrink, B.R., Schmidhuber, J.: A family of Gödel machine implementations. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS(LNAI), pp. 268–273. Springer, Heidelberg (2011)
Tegmark, M.: The mathematical universe. Foundations of Physics 38, 101–150 (2008)
Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–265 (1937)
Wheeler, J.A.: Information, physics, quantum: The search for links. In: Complexity, Entropy, and the Physics of Information, pp. 3–28. Addison-Wesley, Reading (1990)
Zuse, K.: Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig (1969)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pape, L., Kok, A. (2011). Real-World Limits to Algorithmic Intelligence. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds) Artificial General Intelligence. AGI 2011. Lecture Notes in Computer Science(), vol 6830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22887-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-22887-2_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22886-5
Online ISBN: 978-3-642-22887-2
eBook Packages: Computer ScienceComputer Science (R0)