Skip to main content

Ensembles of Bayesian Network Classifiers Using Glaucoma Data and Expertise

  • Chapter
Ensembles in Machine Learning Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 373))

  • 1587 Accesses

Abstract

Bayesian Networks (BNs) are probabilistic graphical models that are popular in numerous fields. Here we propose these models to improve the classification of glaucoma, a major cause of blindness worldwide. We use visual field and retinal data to predict the early onset of glaucoma. In particular, the ability of BNs to deal with missing data allows us to select an optimal data-driven network by comparing supervised and semi-supervised models. An expertise-driven BN is also built by encoding expert knowledge in terms of relations between variables. In order to improve the overall performances for classification and to explore the relations between glaucomatous data and expert knowledge, the expertise-driven network is combined with the selected data-driven network using a BN-based approach. An accuracy-weighted combination of these networks is also compared to the other models. The best performances are obtained with the semi-supervised data-driven network. However, combining it with the expertise-driven network improves performance in many cases and leads to interesting insights about the datasets, networks and metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artes, P.H., Chauhan, B.C.: Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Research 24, 333–354 (2005)

    Article  Google Scholar 

  2. Bowd, C., Zangwill, L.M., Medeiros, F.A., Tavares, I.M., Hoffmann, E.M., Bourne, R.R., Sample, P.A., Weinreb, R.N.: Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Investigative Ophthalmology & Visual Science 47, 2889 (2006)

    Article  Google Scholar 

  3. Chauhan, B.C., Drance, S.M., Douglas, G.R.: The use of visual field indices in detecting changes in the visual field in glaucoma. Investigative Ophthalmology & Visual Science 31, 512 (1990)

    Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. the Royal Stat. Society. Series B (Methodological) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Duin, R., Tax, D.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Efron, B., Tibshirani, R., Tibshirani, R.J.: An introduction to the bootstrap. Chapman & Hall/CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  7. Friedman, N., Koller, D.: Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning 50, 95–125 (2003)

    Article  MATH  Google Scholar 

  8. Gaasterland, D.E., Ederer, F., Sullivan, E.K., Caprioli, J., Cyrlin, M.N.: Advanced glaucoma intervention study: 2. visual field test scoring and reliability. Ophthalmology 101, 1445–1455 (1994)

    Google Scholar 

  9. Garg, A., Pavlovic, V., Huang, T.S.: Bayesian networks as ensemble of classifiers. In: Proc. the 16th Int. Conf. Pattern Recogn., Quebec, Canada, pp. 779–784. IEEE Comp. Society, Los Alamitos (2002)

    Google Scholar 

  10. Garway-Heath, D.F.: Moorfields regression analysis. The Essential HRT Primer. Jocoto Advertising, San Ramon (2005)

    Google Scholar 

  11. Garway-Heath, D.F., Poinoosawmy, D., Fitzke, F.W., Hitchings, R.A.: Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107, 1809–1815 (2000)

    Article  Google Scholar 

  12. Goldbaum, M.H., Sample, P.A., White, H., Colt, B., Raphaelian, P., Fechtner, R.D., Weinreb, R.N.: Interpretation of automated perimetry for glaucoma by neural network. Investigative Ophthalmology & Visual Science 35, 3362 (1994)

    Google Scholar 

  13. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Analysis and Machine Intell. 12, 993–1001 (1990)

    Article  Google Scholar 

  14. Heckerman, D.: A tutorial on learning with Bayesian networks. Tech. Report, Microsoft Research (1995)

    Google Scholar 

  15. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comp. 3, 79–87 (1991)

    Article  Google Scholar 

  16. Johnson, C.A., Sample, P.A., Zangwill, L.M., Vasil, C.G., Cioffi, G.A., Liebmann, J.R., Weinreb, R.N.: Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. American J. Ophthalmology 135, 148–154 (2003)

    Article  Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi Jr., M.P.: Optimization by simulated annealing. Science 220, 671 (1983)

    Article  MathSciNet  Google Scholar 

  18. Kittler, J.: Combining classifiers: A theoretical framework. Pattern Analysis & Appl. 1, 18–27 (1998)

    Article  Google Scholar 

  19. Madigan, D., Raftery, A.E.: Model selection and accounting for model uncertainty in graphical models using Occam’s window. J. the American Stat. Association 89, 1535–1546 (1994)

    Article  MATH  Google Scholar 

  20. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  21. Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P., Mariotti, S.P.: Global data on visual impairment in the year 2002. Bulletin of the World Health Organization 82, 844–851 (2004)

    Google Scholar 

  22. Sharkey, A.J.C.: On combining artificial neural nets. Connection Science 8, 299–314 (1996)

    Article  Google Scholar 

  23. Tucker, A., Vinciotti, V., Liu, X., Garway-Heath, D.: A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif. Intell. Medicine 34, 163–177 (2005)

    Article  Google Scholar 

  24. Valentini, G., Masulli, F.: Ensembles of learning machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Wollstein, G., Garway-Heath, D.F., Hitchings, R.A.: Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 105, 1557–1563 (1998)

    Article  Google Scholar 

  26. Woods, K., Bowyer, K., Kegelmeyer Jr., W.P.: Combination of multiple classifiers using local accuracy estimates. In: Proc. 1996 IEEE Comp. Society Conf. Comp. Vision and Pattern Recogn., San Francisco, CA, pp. 391–396. IEEE Comp. Society, Los Alamitos (1996)

    Google Scholar 

  27. Yanoff, M., Duker, J.S.: Ophthalmology. Mosby, St. Louis (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceccon, S., Garway-Heath, D., Crabb, D., Tucker, A. (2011). Ensembles of Bayesian Network Classifiers Using Glaucoma Data and Expertise. In: Okun, O., Valentini, G., Re, M. (eds) Ensembles in Machine Learning Applications. Studies in Computational Intelligence, vol 373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22910-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22910-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22909-1

  • Online ISBN: 978-3-642-22910-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics