Abstract
Bayesian Networks (BNs) are probabilistic graphical models that are popular in numerous fields. Here we propose these models to improve the classification of glaucoma, a major cause of blindness worldwide. We use visual field and retinal data to predict the early onset of glaucoma. In particular, the ability of BNs to deal with missing data allows us to select an optimal data-driven network by comparing supervised and semi-supervised models. An expertise-driven BN is also built by encoding expert knowledge in terms of relations between variables. In order to improve the overall performances for classification and to explore the relations between glaucomatous data and expert knowledge, the expertise-driven network is combined with the selected data-driven network using a BN-based approach. An accuracy-weighted combination of these networks is also compared to the other models. The best performances are obtained with the semi-supervised data-driven network. However, combining it with the expertise-driven network improves performance in many cases and leads to interesting insights about the datasets, networks and metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Artes, P.H., Chauhan, B.C.: Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Research 24, 333–354 (2005)
Bowd, C., Zangwill, L.M., Medeiros, F.A., Tavares, I.M., Hoffmann, E.M., Bourne, R.R., Sample, P.A., Weinreb, R.N.: Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Investigative Ophthalmology & Visual Science 47, 2889 (2006)
Chauhan, B.C., Drance, S.M., Douglas, G.R.: The use of visual field indices in detecting changes in the visual field in glaucoma. Investigative Ophthalmology & Visual Science 31, 512 (1990)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. the Royal Stat. Society. Series B (Methodological) 39, 1–38 (1977)
Duin, R., Tax, D.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)
Efron, B., Tibshirani, R., Tibshirani, R.J.: An introduction to the bootstrap. Chapman & Hall/CRC Press, Boca Raton (1993)
Friedman, N., Koller, D.: Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning 50, 95–125 (2003)
Gaasterland, D.E., Ederer, F., Sullivan, E.K., Caprioli, J., Cyrlin, M.N.: Advanced glaucoma intervention study: 2. visual field test scoring and reliability. Ophthalmology 101, 1445–1455 (1994)
Garg, A., Pavlovic, V., Huang, T.S.: Bayesian networks as ensemble of classifiers. In: Proc. the 16th Int. Conf. Pattern Recogn., Quebec, Canada, pp. 779–784. IEEE Comp. Society, Los Alamitos (2002)
Garway-Heath, D.F.: Moorfields regression analysis. The Essential HRT Primer. Jocoto Advertising, San Ramon (2005)
Garway-Heath, D.F., Poinoosawmy, D., Fitzke, F.W., Hitchings, R.A.: Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107, 1809–1815 (2000)
Goldbaum, M.H., Sample, P.A., White, H., Colt, B., Raphaelian, P., Fechtner, R.D., Weinreb, R.N.: Interpretation of automated perimetry for glaucoma by neural network. Investigative Ophthalmology & Visual Science 35, 3362 (1994)
Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Analysis and Machine Intell. 12, 993–1001 (1990)
Heckerman, D.: A tutorial on learning with Bayesian networks. Tech. Report, Microsoft Research (1995)
Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comp. 3, 79–87 (1991)
Johnson, C.A., Sample, P.A., Zangwill, L.M., Vasil, C.G., Cioffi, G.A., Liebmann, J.R., Weinreb, R.N.: Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. American J. Ophthalmology 135, 148–154 (2003)
Kirkpatrick, S., Gelatt, C.D., Vecchi Jr., M.P.: Optimization by simulated annealing. Science 220, 671 (1983)
Kittler, J.: Combining classifiers: A theoretical framework. Pattern Analysis & Appl. 1, 18–27 (1998)
Madigan, D., Raftery, A.E.: Model selection and accounting for model uncertainty in graphical models using Occam’s window. J. the American Stat. Association 89, 1535–1546 (1994)
Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Francisco (1988)
Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P., Mariotti, S.P.: Global data on visual impairment in the year 2002. Bulletin of the World Health Organization 82, 844–851 (2004)
Sharkey, A.J.C.: On combining artificial neural nets. Connection Science 8, 299–314 (1996)
Tucker, A., Vinciotti, V., Liu, X., Garway-Heath, D.: A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif. Intell. Medicine 34, 163–177 (2005)
Valentini, G., Masulli, F.: Ensembles of learning machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–20. Springer, Heidelberg (2002)
Wollstein, G., Garway-Heath, D.F., Hitchings, R.A.: Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 105, 1557–1563 (1998)
Woods, K., Bowyer, K., Kegelmeyer Jr., W.P.: Combination of multiple classifiers using local accuracy estimates. In: Proc. 1996 IEEE Comp. Society Conf. Comp. Vision and Pattern Recogn., San Francisco, CA, pp. 391–396. IEEE Comp. Society, Los Alamitos (1996)
Yanoff, M., Duker, J.S.: Ophthalmology. Mosby, St. Louis (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ceccon, S., Garway-Heath, D., Crabb, D., Tucker, A. (2011). Ensembles of Bayesian Network Classifiers Using Glaucoma Data and Expertise. In: Okun, O., Valentini, G., Re, M. (eds) Ensembles in Machine Learning Applications. Studies in Computational Intelligence, vol 373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22910-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-22910-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22909-1
Online ISBN: 978-3-642-22910-7
eBook Packages: EngineeringEngineering (R0)