Abstract
This chapter reports our knowledge about the analysis and recognition of scanned administrative documents. Regarding essentially the administrative paper flow with new and continuous arrivals, all the conventional techniques reserved to static databases modeling and recognition are doomed to failure. For this purpose, a new technique based on the experience was investigated giving very promising results. This technique is related to the case-based reasoning already used in data mining and various problems of machine learning. After the presentation of the context related to the administrative document flow and its requirements in a real time processing, we present a case based reasonning for invoice processing. The case corresponds to the co-existence of a problem and its solution. The problem in an invoice corresponds to a local structure such as the keywords of an address or the line patterns in the amounts table, while the solution is related to their content. This problem is then compared to a document case base using graph probing. For this purpose, we proposed an improvement of an already existing neural network called Incremental Growing Neural Gas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Grosicki, E., Carr, M., Brodin, J.-M., Geoffrois, E.: Results of the RIMES Evaluation Campaign for Handwritten Mail Processing. In: Int. Conf. on Document Analysis and Recognition (ICDAR) (2009)
Grosicki, E., El Abed, H.: ICDAR 2009 Handwriting Recognition Competition. In: 10th Int. Conf. on Document Analysis and Recognition, ICDAR (2009)
Bunke, H.: Recognition of cursive Roman handwriting - past, present and future. In: Int. Conf. on Document Analysis and Recognition (ICDAR 2003), vol. 1, pp. 448–459 (2003)
Lladós, J., Valveny, E., Sánchez, G., Martí, E.: Symbol recognition: Current advances and perspectives. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 104–127. Springer, Heidelberg (2002)
Chang, M., Chen, S.: Deformed trademark retrieval based on 2d pseudo-hidden markov model. Pattern Recognition 34, 953–967 (2001)
Tombre, K., Tabbone, S., Dosch, P.: Musings on symbol recognition. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 23–34. Springer, Heidelberg (2006)
Krishnamoorthy: Syntactic segmentation and labeling of digitalized pages from technical journals. PAMI (1993)
Yamashita, A., Amano, T., Takahashi, I., Toyokawa, K.: A model based layout understanding method for the document recognition system. In: Int. Conf. on Document Analysis and Recognition 2003, ICDAR (1991)
Duygulu, P., Atalay, V.: A hierarchical representation of form documents for identification and retrieval. Int. Journal on Document Analysis and Recognition (IJDAR) 5(1), 17–27 (2002)
Mao, J., Abayan, M., Mohiuddin, K.: A model-based form processing sub-system. In: Int. Conf. on Pattern Recognition, ICPR (1996)
Sako, H., Seki, M., Furukawa, N., Ikeda, H., Imaizumi, A.: Form reading based on form-type identification and form-data recognition. In: Int. Conf. on Document Analysis and Recognition 2003 (ICDAR), Scotland (2003)
Ting, A., Leung, M.K.H.: Business form classification using strings. In: 13th International Conference on Pattern Recognition (ICPR), p. 690. IEEE Computer Society, Washington, DC, USA (1996)
Hroux, P., Diana, S., Ribert, A., Trupin, E.: Etude de methodes de classification pour l’identification automatique de classes de formulaires. In: Int. Francophone Conferenceon Writing and Document Analysis, CIFED (1998)
Ishitani, Y.: Model based information extraction and its application to document Images. In: Int. Workshop on Digital Library and Image Analysis, DLIA (2001)
Cesarini, F., Gori, M., Marinai, S., Soda, G.: Informys: A flexible invoice-like form-reader system. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 730–745 (1998)
Belad, A., Belad, Y., Valverde, L.N., Kebairi, S.: Adaptive Technology for Mail-Order Form Segmentation. In: Int. Conf. on Document Analysis and Recognition (ICDAR), Seattle, USA, pp. 689–693 (2001)
Wahl, F., Wong, K., Casey, R.: Block segmentation and text extraction in mixed text/image documents. Graphical Models and Image Processing 20 (1982)
Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for technical journals. Computer 25 (1992)
Pavlidis, T., Zhou, J.: Page segmentation and classification. Graphical Models and Image Processing 54 (1992)
Sako, H., Seki, M., Furukawa, N., Ikeda, H., Imaizumi, A.: Form reading based on form-type identification and form-data recognition. In: Int. Conf. on Document Analysis and Recognition (ICDAR), Scotland (2003)
Laroum, S., Bchet, N., Roche, M., Hamza, H.: Hybred: An OCR document representation for classification tasks. International Journal on Data Engineering and Management (2009)
Zhong, S.: Efficient online spherical k-means clustering. In: Proceedings IEEE of the International Joint Conference on Neural Networks, IJCNN 2005, Montreal, Canada, July 30 - August 4, pp. 3180–3185 (2005)
Vapnik, V., Chervonenkis, A.: A note on one class of perceptrons. Automation and Remote Control 25 (1964); SVM & Boosting
Bartlett, P., Shawe-Taylor, J.: Generalization performance of support vector machines and other pattern classifiers. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods Support Vector Learning, pp. 43–54. MIT Press, Cambridge (1999)
Kim, J., Le, D.X., Thoma, G.R.: Automated labeling in document images. In: Document Recognition and Retrieval VIII (2001)
Cesarini, F., Marinai, S., Sarti, L., Soda, G.: Trainable table location in document images. In: Int. Conf. on Pattern Recognition (ICPR), vol. 3, pp. 236–240 (2002)
Coüasnon, B.: Dealing with noise in DMOS, a generic method for structured document recognition: An example on a complete grammar. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 38–49. Springer, Heidelberg (2004)
Coasnon, B.: Dmos, ”a generic document recognition method: application to table structure analysis in a general and in a specific way. Int. Journal on Document Analysis and Recognition 8(2-3), 111–122 (2006)
Conway, A.: Page grammars and page parsing: A syntatic approach to document layout recognition. In: Int. Conf. on Document Analysis and Recognition, ICDAR (1993)
Niyogi, D., Srihari, S.N.: Knowledge-based derivation of document logical structure. In: Int. Conf. on Document Analysis and Recognition, ICDAR (1995)
Dengel, A., Dubiel, F.: Computer understanding of document structure. IJIST (1996)
Amano, A., Asada, N.: Graph Grammar Based Analysis System of Complex Table Form Document. In: Int. Conf. on Document Analysis and Recognition (ICDAR) (2003)
Sainz Palmero, G.I., Cano Izquierdo, J.M., Dimitriadis, Y.A., Lopez, J.: A new neuro-fuzzy system for logical labeling of documents. Pattern Recognition (1996)
LeBourgeois, F., Souafi-Bensafi, S., Duong, J., Parizeau, M., Cotc, M., Emptoz, H.: Using statistical models in document images understanding. In: DLIA (2001)
Rangoni, Y., Belad, A.: Data Categorization for a Context Return Applied to Logical Document Structure Recognition. In: Int. Conf. on Document Analysis and Recognition (ICDAR) (2005)
Rangoni, Y., Belad, A.: Data Categorization for a Context Return Applied to Logical Document Structure Recognition. In: Int. Conf. on Document Analysis and Recognition, ICDAR (2005)
Sainz Palmero, G.I., Cano Izquierdo, J.M., Dimitriadis, Y.A., Lopez, J.: A new neuro-fuzzy system for logical labeling of documents. Pattern Recognition (1996)
Hamza, H., Belaïd, Y., Belaïd, A.: Case-based reasoning for invoice analysis and recognition. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 404–418. Springer, Heidelberg (2007)
Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. IOS Press, Amsterdam (1994)
Burke, R., Hammond, K., Kozlovsky, J.: Knowledge-based information retrieval from semistructured text (1995)
Kolodner, J.: Maintaining organization in a dynamic long-term memory. Cognitive Science (1983)
Watson, I., Marir, F.: Case-based reasoning: A review 9, 355–381 (1994)
Hamza, H., Belaïd, Y., Belaïd, A.: Case-based reasoning for invoice analysis and recognition. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 404–418. Springer, Heidelberg (2007)
Fritzke, B.: Growing cell structuresa self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)
Hodge, V.J., Austin, J.: Hierarchical growing cell structures: Treegcs. Knowledge and Data Engineering 13(2), 207–218 (2001)
Gunter, S., Bunke, H.: Self-organizing map for clustering in the graph domain. Pattern Recognition Letters 23(4), 405–417 (2002)
Prudent, Y., Ennaji, A.: A new learning algorithm for incremental self-organizing maps. In: ESANN, p. 712 (2005)
Lopresti, D.P., Wilfong, G.T.: A fast technique for comparing graph representations with applications to performance evaluation. IJDAR 6(4), 219–229 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Belaïd, A., D’Andecy, V.P., Hamza, H., Belaïd, Y. (2011). Administrative Document Analysis and Structure. In: Biba, M., Xhafa, F. (eds) Learning Structure and Schemas from Documents. Studies in Computational Intelligence, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22913-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-22913-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22912-1
Online ISBN: 978-3-642-22913-8
eBook Packages: EngineeringEngineering (R0)