Skip to main content

Administrative Document Analysis and Structure

  • Chapter
Learning Structure and Schemas from Documents

Part of the book series: Studies in Computational Intelligence ((SCI,volume 375))

  • 724 Accesses

Abstract

This chapter reports our knowledge about the analysis and recognition of scanned administrative documents. Regarding essentially the administrative paper flow with new and continuous arrivals, all the conventional techniques reserved to static databases modeling and recognition are doomed to failure. For this purpose, a new technique based on the experience was investigated giving very promising results. This technique is related to the case-based reasoning already used in data mining and various problems of machine learning. After the presentation of the context related to the administrative document flow and its requirements in a real time processing, we present a case based reasonning for invoice processing. The case corresponds to the co-existence of a problem and its solution. The problem in an invoice corresponds to a local structure such as the keywords of an address or the line patterns in the amounts table, while the solution is related to their content. This problem is then compared to a document case base using graph probing. For this purpose, we proposed an improvement of an already existing neural network called Incremental Growing Neural Gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grosicki, E., Carr, M., Brodin, J.-M., Geoffrois, E.: Results of the RIMES Evaluation Campaign for Handwritten Mail Processing. In: Int. Conf. on Document Analysis and Recognition (ICDAR) (2009)

    Google Scholar 

  2. Grosicki, E., El Abed, H.: ICDAR 2009 Handwriting Recognition Competition. In: 10th Int. Conf. on Document Analysis and Recognition, ICDAR (2009)

    Google Scholar 

  3. Bunke, H.: Recognition of cursive Roman handwriting - past, present and future. In: Int. Conf. on Document Analysis and Recognition (ICDAR 2003), vol. 1, pp. 448–459 (2003)

    Google Scholar 

  4. Lladós, J., Valveny, E., Sánchez, G., Martí, E.: Symbol recognition: Current advances and perspectives. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 104–127. Springer, Heidelberg (2002)

    Google Scholar 

  5. Chang, M., Chen, S.: Deformed trademark retrieval based on 2d pseudo-hidden markov model. Pattern Recognition 34, 953–967 (2001)

    Article  MATH  Google Scholar 

  6. Tombre, K., Tabbone, S., Dosch, P.: Musings on symbol recognition. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 23–34. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Krishnamoorthy: Syntactic segmentation and labeling of digitalized pages from technical journals. PAMI (1993)

    Google Scholar 

  8. Yamashita, A., Amano, T., Takahashi, I., Toyokawa, K.: A model based layout understanding method for the document recognition system. In: Int. Conf. on Document Analysis and Recognition 2003, ICDAR (1991)

    Google Scholar 

  9. Duygulu, P., Atalay, V.: A hierarchical representation of form documents for identification and retrieval. Int. Journal on Document Analysis and Recognition (IJDAR) 5(1), 17–27 (2002)

    Article  MATH  Google Scholar 

  10. Mao, J., Abayan, M., Mohiuddin, K.: A model-based form processing sub-system. In: Int. Conf. on Pattern Recognition, ICPR (1996)

    Google Scholar 

  11. Sako, H., Seki, M., Furukawa, N., Ikeda, H., Imaizumi, A.: Form reading based on form-type identification and form-data recognition. In: Int. Conf. on Document Analysis and Recognition 2003 (ICDAR), Scotland (2003)

    Google Scholar 

  12. Ting, A., Leung, M.K.H.: Business form classification using strings. In: 13th International Conference on Pattern Recognition (ICPR), p. 690. IEEE Computer Society, Washington, DC, USA (1996)

    Chapter  Google Scholar 

  13. Hroux, P., Diana, S., Ribert, A., Trupin, E.: Etude de methodes de classification pour l’identification automatique de classes de formulaires. In: Int. Francophone Conferenceon Writing and Document Analysis, CIFED (1998)

    Google Scholar 

  14. Ishitani, Y.: Model based information extraction and its application to document Images. In: Int. Workshop on Digital Library and Image Analysis, DLIA (2001)

    Google Scholar 

  15. Cesarini, F., Gori, M., Marinai, S., Soda, G.: Informys: A flexible invoice-like form-reader system. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 730–745 (1998)

    Article  Google Scholar 

  16. Belad, A., Belad, Y., Valverde, L.N., Kebairi, S.: Adaptive Technology for Mail-Order Form Segmentation. In: Int. Conf. on Document Analysis and Recognition (ICDAR), Seattle, USA, pp. 689–693 (2001)

    Google Scholar 

  17. Wahl, F., Wong, K., Casey, R.: Block segmentation and text extraction in mixed text/image documents. Graphical Models and Image Processing 20 (1982)

    Google Scholar 

  18. Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for technical journals. Computer 25 (1992)

    Google Scholar 

  19. Pavlidis, T., Zhou, J.: Page segmentation and classification. Graphical Models and Image Processing 54 (1992)

    Google Scholar 

  20. Sako, H., Seki, M., Furukawa, N., Ikeda, H., Imaizumi, A.: Form reading based on form-type identification and form-data recognition. In: Int. Conf. on Document Analysis and Recognition (ICDAR), Scotland (2003)

    Google Scholar 

  21. Laroum, S., Bchet, N., Roche, M., Hamza, H.: Hybred: An OCR document representation for classification tasks. International Journal on Data Engineering and Management (2009)

    Google Scholar 

  22. Zhong, S.: Efficient online spherical k-means clustering. In: Proceedings IEEE of the International Joint Conference on Neural Networks, IJCNN 2005, Montreal, Canada, July 30 - August 4, pp. 3180–3185 (2005)

    Google Scholar 

  23. Vapnik, V., Chervonenkis, A.: A note on one class of perceptrons. Automation and Remote Control 25 (1964); SVM & Boosting

    Google Scholar 

  24. Bartlett, P., Shawe-Taylor, J.: Generalization performance of support vector machines and other pattern classifiers. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods Support Vector Learning, pp. 43–54. MIT Press, Cambridge (1999)

    Google Scholar 

  25. Kim, J., Le, D.X., Thoma, G.R.: Automated labeling in document images. In: Document Recognition and Retrieval VIII (2001)

    Google Scholar 

  26. Cesarini, F., Marinai, S., Sarti, L., Soda, G.: Trainable table location in document images. In: Int. Conf. on Pattern Recognition (ICPR), vol. 3, pp. 236–240 (2002)

    Google Scholar 

  27. Coüasnon, B.: Dealing with noise in DMOS, a generic method for structured document recognition: An example on a complete grammar. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 38–49. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Coasnon, B.: Dmos, ”a generic document recognition method: application to table structure analysis in a general and in a specific way. Int. Journal on Document Analysis and Recognition 8(2-3), 111–122 (2006)

    Article  Google Scholar 

  29. Conway, A.: Page grammars and page parsing: A syntatic approach to document layout recognition. In: Int. Conf. on Document Analysis and Recognition, ICDAR (1993)

    Google Scholar 

  30. Niyogi, D., Srihari, S.N.: Knowledge-based derivation of document logical structure. In: Int. Conf. on Document Analysis and Recognition, ICDAR (1995)

    Google Scholar 

  31. Dengel, A., Dubiel, F.: Computer understanding of document structure. IJIST (1996)

    Google Scholar 

  32. Amano, A., Asada, N.: Graph Grammar Based Analysis System of Complex Table Form Document. In: Int. Conf. on Document Analysis and Recognition (ICDAR) (2003)

    Google Scholar 

  33. Sainz Palmero, G.I., Cano Izquierdo, J.M., Dimitriadis, Y.A., Lopez, J.: A new neuro-fuzzy system for logical labeling of documents. Pattern Recognition (1996)

    Google Scholar 

  34. LeBourgeois, F., Souafi-Bensafi, S., Duong, J., Parizeau, M., Cotc, M., Emptoz, H.: Using statistical models in document images understanding. In: DLIA (2001)

    Google Scholar 

  35. Rangoni, Y., Belad, A.: Data Categorization for a Context Return Applied to Logical Document Structure Recognition. In: Int. Conf. on Document Analysis and Recognition (ICDAR) (2005)

    Google Scholar 

  36. Rangoni, Y., Belad, A.: Data Categorization for a Context Return Applied to Logical Document Structure Recognition. In: Int. Conf. on Document Analysis and Recognition, ICDAR (2005)

    Google Scholar 

  37. Sainz Palmero, G.I., Cano Izquierdo, J.M., Dimitriadis, Y.A., Lopez, J.: A new neuro-fuzzy system for logical labeling of documents. Pattern Recognition (1996)

    Google Scholar 

  38. Hamza, H., Belaïd, Y., Belaïd, A.: Case-based reasoning for invoice analysis and recognition. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 404–418. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  39. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. IOS Press, Amsterdam (1994)

    Google Scholar 

  40. Burke, R., Hammond, K., Kozlovsky, J.: Knowledge-based information retrieval from semistructured text (1995)

    Google Scholar 

  41. Kolodner, J.: Maintaining organization in a dynamic long-term memory. Cognitive Science (1983)

    Google Scholar 

  42. Watson, I., Marir, F.: Case-based reasoning: A review  9, 355–381 (1994)

    Google Scholar 

  43. Hamza, H., Belaïd, Y., Belaïd, A.: Case-based reasoning for invoice analysis and recognition. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 404–418. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  44. Fritzke, B.: Growing cell structuresa self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  45. Hodge, V.J., Austin, J.: Hierarchical growing cell structures: Treegcs. Knowledge and Data Engineering 13(2), 207–218 (2001)

    Article  Google Scholar 

  46. Gunter, S., Bunke, H.: Self-organizing map for clustering in the graph domain. Pattern Recognition Letters 23(4), 405–417 (2002)

    Article  Google Scholar 

  47. Prudent, Y., Ennaji, A.: A new learning algorithm for incremental self-organizing maps. In: ESANN, p. 712 (2005)

    Google Scholar 

  48. Lopresti, D.P., Wilfong, G.T.: A fast technique for comparing graph representations with applications to performance evaluation. IJDAR 6(4), 219–229 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belaïd, A., D’Andecy, V.P., Hamza, H., Belaïd, Y. (2011). Administrative Document Analysis and Structure. In: Biba, M., Xhafa, F. (eds) Learning Structure and Schemas from Documents. Studies in Computational Intelligence, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22913-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22913-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22912-1

  • Online ISBN: 978-3-642-22913-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics