Abstract
Progressive Filtering is a hierarchical classification technique framed within the local classifier per node approach where each classifier is entrusted with deciding whether the input in hand can be forwarded or not to its children. In this chapter, we illustrate the effectiveness of Progressive Filtering on the Web, focusing on the task of automatically creating press reviews. To this end, we present NEWS.MAS, a multiagent system aimed at: (i) extracting information from online newspapers by using suitable wrapper agents, each associated with a specific information source, (ii) categorizing news articles according to a given taxonomy, and (iii) providing user feedback to improve the performance of the system depending on user needs and preferences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Addis, A., Armano, G., Mascia, F., Vargiu, E.: News retrieval through a multiagent system. In: WOA 2007 Dagli Oggetti agli Agenti: Agenti e Industria: Applicazioni tecnologiche degli agenti software, pp. 48–54 (2007)
Addis, A., Armano, G., Vargiu, E.: From a generic multiagent architecture to multiagent information retrieval systems. In: AT2AI-6, Sixth International Workshop, From Agent Theory to Agent Implementation, pp. 3–9 (2008)
Addis, A., Armano, G., Vargiu, E.: Assessing progressive filtering to perform hierarchical text categorization in presence of input imbalance. In: Proceedings of International Conference on Knowledge Discovery and Information Retrieval (KDIR 2010), pp. 14–23 (2010)
Addis, A., Armano, G., Vargiu, E.: A comparative experimental assessment of a threshold selection algorithm in hierarchical text categorization. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 32–42. Springer, Heidelberg (2011)
Addis, A., Cherhi, G., Manconi, A., Vargiu, E.: A multiagent system for personalized press reviews. In: Soro, A., Armano, G., Paddeu, G. (eds.) Distributed Agent-Based Retrieval Tools, Polimetrica, pp. 67–86 (2006)
Armano, G.: On the progressive filtering approach to hierarchical text categorization. Tech. rep., DIEE - University of Cagliari (2009)
Armstrong, R., Freitag, D., Joachims, T., Mitchell, T.: Webwatcher: A learning apprentice for the world wide web. In: AAAI Spring Symposium on Information Gathering, pp. 6–12 (1995)
Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley Series in Agent Technology. John Wiley and Sons, Chichester (2007)
Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In: SIGIR 2009: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 11–18. ACM, New York (2009)
Bleyer, M.: Multi-agent systems for information retrieval on the world wide web. Ph.D. thesis, University of Ulm, Germany (1998)
Brank, J., Mladenić, D., Grobelnik, M.: Large-scale hierarchical text classification using svm and coding matrices. In: Large-Scale Hierarchical Classification Workshop (2010)
Ceci, M., Malerba, D.: Hierarchical classification of HTML documents with webClassII. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 57–72. Springer, Heidelberg (2003)
Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehensive study. Journal of Intelligent Information Systems 28(1), 37–78 (2007)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)
Christopher, D., Manning, P.R., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Cost, W., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)
D’Alessio, S., Murray, K., Schiaffino, R.: The effect of using hierarchical classifiers in text categorization. In: Proceedings of of the 6th International Conference on Recherche d’Information Assistée par Ordinateur (RIAO), pp. 302–313 (2000)
Dumais, S.T., Chen, H.: Hierarchical classification of Web content. In: Belkin, N.J., Ingwersen, P., Leong, M.-K. (eds.) Proceedings of SIGIR 2000, 23rd ACM International Conference on Research and Development in Information Retrieval, pp. 256–263. ACM Press, New York (2000)
Esuli, A., Fagni, T., Sebastiani, F.: Boosting multi-label hierarchical text categorization. Inf. Retr. 11(4), 287–313 (2008)
Etzioni, O., Weld, D.: Intelligent agents on the internet: fact, fiction and forecast. IEEE Expert 10(4), 44–49 (1995)
Fu, Y., Ke, W., Mostafa, J.: Automated text classification using a multi-agent framework. In: JCDL 2005: Proceedings of the 5th ACM, IEEE-CS Joint Conference on Digital Libraries, pp. 157–158. ACM Press, USA (2005), http://doi.acm.org/10.1145/1065385.1065420
Gaussier, É., Goutte, C., Popat, K., Chen, F.: A hierarchical model for clustering and categorising documents. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 229–247. Springer, Heidelberg (2002), http://link.springer.de/link/service/series/0558/papers/2291/22910229.pdf
Japkowicz, N.: Learning from imbalanced data sets: a comparison of various strategies. In: AAAI Workshop on Learning from Imbalanced Data Sets (2000)
Jirapanthong, W., Sunetnanta, T.: An xml-based multi-agents model for information retrieval on www. In: Proceedings of the 4th National Computer Science and Engineering Conference, NCSEC 2000 (2000)
Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: Fisher, D.H. (ed.) Proceedings of ICML 1997, 14th International Conference on Machine Learning, pp. 170–178. Morgan Kaufmann, San Francisco (1997)
Kotsiantis, S., Pintelas, P.: Mixture of expert agents for handling imbalanced data sets. Ann Math Comput Teleinformatics 1, 46–55 (2003)
Kotsiantis, S.B.: Local reweight wrapper for the problem of imbalance. Int. J. of Artificial Intelligence and Soft Computing 1, 25–38 (2008), http://www.inderscience.com/link.php?id=21262
Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann, San Francisco (1997)
Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey of web data extraction tools. SIGMOD Rec. 31(2), 84–93 (2002), http://doi.acm.org/10.1145/565117.565137
Lewis, D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5, 361–397 (2004)
Lewis, D.D.: Evaluating and optimizing autonomous text classification systems. In: SIGIR 1995: Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 246–254. ACM, New York (1995), http://doi.acm.org/10.1145/215206.215366
Lieberman, H.: Letizia: An agent that assists web browsing. In: Mellish, C.S. (ed.) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 924–929. Morgan Kaufmann Publishers Inc., San Francisco (1995), citeseer.ist.psu.edu/lieberman95letizia.html
McCallum, A.K., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classification by shrinkage in a hierarchy of classes. In: Shavlik, J.W. (ed.) Proceedings of ICML 1998 15th International Conference on Machine Learning, pp. 359–367. Morgan Kaufmann, San Francisco (1998)
Mladenić, D., Grobelnik, M.: Feature selection for classification based on text hierarchy. In: Text and the Web, Conference on Automated Learning and Discovery CONALD 1998 (1998)
Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Learning hierarchical multi-category text classification models. In: ICML 2005: Proceedings of the 22nd international conference on Machine learning, pp. 744–751. ACM, New York (2005)
Ruiz, M.E., Srinivasan, P.: Hierarchical text categorization using neural networks. Information Retrieval 5(1), 87–118 (2002)
Shaban, K., Basir, O., Kamel, M.: Team consensus in web multi-agents information retrieval system. In: Team consensus in web multi-agents information retrieval system, pp. 68–73 (2004)
Sheth, B., Maes, P.: Evolving agents for personalized information filtering. In: Proceedings of the 9th Conference on Artificial Intelligence for Applications (CAIA 1993), pp. 345–352 (1993)
Silla, C., Freitas, A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery 22, 31–72 (2011); doi:10.1007/s10618-010-0175-9, http://dx.doi.org/10.1007/s10618-010-0175-9
Sun, A., Lim, E.: Hierarchical text classification and evaluation. In: ICDM 2001: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 521–528. IEEE Computer Society Press, Washington, DC, USA (2001)
Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J.: The RETSINA MAS infrastructure. Tech. Rep. CMU-RI-TR-01-05, Robotics Institute Technical Report, Carnegie Mellon (2001), citeseer.ist.psu.edu/article/sycara01retsina.html
Takigawa, Y., Hotta, S., Kiyasu, S., Miyahara, S.: Pattern classification using weighted average patterns of categorical k-nearest neighbors. In: Proceedings of the 1th International Workshop on Camera-Based Document Analysis and Recognition, pp. 111–118 (2005)
Weigend, A.S., Wiener, E.D., Pedersen, J.O.: Exploiting hierarchy in text categorization. Information Retrieval 1(3), 193–216 (1999)
Wooldridge, M.J., Jennings, N.R.: Agent Theories, Architectures, and Languages: A Survey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS, vol. 890, pp. 1–22. Springer, Heidelberg (1995), citeseer.ist.psu.edu/article/wooldridge94agent.html
Wu, F., Zhang, J., Honavar, V.G.: Learning classifiers using hierarchically structured class taxonomies. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 313–320. Springer, Heidelberg (2005)
Wu, G., Chang, E.Y.: Class-boundary alignment for imbalanced dataset learning. In: ICML 2003 Workshop on Learning from Imbalanced Data Sets, pp. 49–56 (2003)
Yan, A.R., Liu, Y., Jin, R., Hauptmann, A.: On predicting rare classes with svm ensembles in scene classification. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 3, pp. III-21–4 (2003)
Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1/2), 69–90 (1999), citeseer.ist.psu.edu/yang97evaluation.html
Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Fisher, D.H. (ed.) Proceedings of ICML 1997, 14th International Conference on Machine Learning, pp. 412–420. Morgan Kaufmann, San Francisco (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Addis, A., Armano, G., Vargiu, E. (2011). Progressive Filtering on the Web: The Press Reviews Case Study. In: Biba, M., Xhafa, F. (eds) Learning Structure and Schemas from Documents. Studies in Computational Intelligence, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22913-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-22913-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22912-1
Online ISBN: 978-3-642-22913-8
eBook Packages: EngineeringEngineering (R0)