Skip to main content

MSSQ: Manhattan Spatial Skyline Queries

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6849))

Included in the following conference series:

Abstract

Skyline queries have gained attention lately for supporting effective retrieval over massive spatial data. While efficient algorithms have been studied for spatial skyline queries using Euclidean distance, or, L 2 norm, these algorithms are (1) still quite computationally intensive and (2) unaware of the road constraints. Our goal is to develop a more efficient algorithm for L 1 norm, also known as Manhattan distance, which closely reflects road network distance for metro areas with well-connected road networks. Towards this goal, we present a simple and efficient algorithm which, given a set P of data points and a set Q of query points in the plane, returns the set of spatial skyline points in just O(|P|log|P|) time, assuming that |Q| ≤ |P|. This is significantly lower in complexity than the best known method. In addition to efficiency and applicability, our proposed algorithm has another desirable property of independent computation and extensibility to L  ∞  norm, which naturally invites parallelism and widens applicability. Our extensive empirical results suggest that our algorithm outperforms the state-of-the-art approaches by orders of magnitude.

Work by Son and Ahn was supported by National IT Industry Promotion Agency (NIPA) under the program of Software Engineering Technologies Development and Experts Education. Work by Hwang was supported by Microsoft Research Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery 22(4), 469–476 (1975)

    Article  MATH  Google Scholar 

  2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001: Proc. of the 17th International Conference on Data Engineering, p. 421 (2001)

    Google Scholar 

  3. Tan, K., Eng, P., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB 2001: Proc. of the 27th International Conference on Very Large Data Bases, pp. 301–310 (2001)

    Google Scholar 

  4. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: SIGMOD 2003: Proc. of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 467–478 (2003)

    Google Scholar 

  5. Chomicki, J., Godfery, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE 2007: Proc. of the 23rd International Conference on Data Engineering (2007)

    Google Scholar 

  6. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB 2006: Proc. of the 32nd International Conference on Very Large Data Bases, pp. 751–762 (2006)

    Google Scholar 

  7. Sharifzadeh, M., Shahabi, C., Kazemi, L.: Processing spatial skyline queries in both vector spaces and spatial network databases. ACM Transactions on Database Systems (TODS) 34(3), 1–43 (2009)

    Article  Google Scholar 

  8. Son, W., Lee, M.W., Ahn, H.K., Hwang, S.w.: Spatial skyline queries: An efficient geometric algorithm. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 247–264. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lee, M.W., Son, W., Ahn, H.K., Hwang, S.w.: Spatial skyline queries: exact and approximation algorithms. GeoInformatica, 1–33 (2010)

    Google Scholar 

  10. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for skyline queries. In: VLDB 2002: Proc. of the 28th International Conference on Very Large Data Bases, pp. 275–286 (2002)

    Google Scholar 

  11. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB 2005: Proc. of the 31st International Conference on Very Large Data Bases, pp. 229–240 (2005)

    Google Scholar 

  12. Chan, C.Y., Jagadish, H., Tan, K., Tung, A.K., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Chan, C.Y., Jagadish, H., Tan, K.L., Tung, A.K., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: SIGMOD 2006: Proc. of the 2006 ACM SIGMOD International Conference on Management of Data (2006)

    Google Scholar 

  14. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline operator. In: ICDE 2007: Proc. of the 23rd International Conference on Data Engineering, pp. 86–95 (2007)

    Google Scholar 

  15. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD 1995: Proc. of the 1995 ACM SIGMOD international conference on Management of data, pp. 71–79 (1995)

    Google Scholar 

  16. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A cost model for nearest neighbor search in high-dimensional data space. In: PODS 1997: Proc. of the 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp. 78–86 (1997)

    Google Scholar 

  17. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Transactions on Database Systems 30(2), 529–576 (2005)

    Article  Google Scholar 

  19. Agarwal, P., Erickson, J.: Geometric Range Searching and Its Relatives. Advances in Discrete and Computational Geometry, pp. 1–56 (1999)

    Google Scholar 

  20. Chazelle, B.: An algorithm for segment-dragging and its implementation. Algorithmica 3(1), 205–221 (1988)

    Article  Google Scholar 

  21. Mitchell, J.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8(1), 55–88 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Son, W., Hwang, Sw., Ahn, HK. (2011). MSSQ: Manhattan Spatial Skyline Queries. In: Pfoser, D., et al. Advances in Spatial and Temporal Databases. SSTD 2011. Lecture Notes in Computer Science, vol 6849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22922-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22922-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22921-3

  • Online ISBN: 978-3-642-22922-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics