Abstract
Current Geographic/Geospatial Information Systems (GIS) and Data Mining Systems (DMS) so far are usually not designed to interoperate. GIS research has a strong emphasis on information management and retrieval, whereas DMS usually have too little geographic functionality to perform appropriate analysis. In this demonstration, we introduce an integrated GIS-DMS system for performing advanced data mining tasks such as outlier detection on geo-spatial data, but which also allows the interaction with existing GIS and this way allows a thorough evaluation of the results. The system enables convenient development of new algorithms as well as application of existing data mining algorithms to the spatial domain, bridging the gap between these two worlds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Graf, F., Kriegel, H.P., Renz, M., Schubert, M.: PAROS: Pareto optimal route selection. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), Indianapolis, IN (2010)
Shekhar, S., Lu, C.T., Zhang, P.: A unified approach to detecting spatial outliers. GeoInformatica 7(2), 139–166 (2003)
Lu, C.T., Chen, D., Kou, Y.: Algorithms for spatial outlier detection. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), Melbourne, FL (2003)
Kou, Y., Lu, C.T., Chen, D.: Spatial weighted outlier detection. In: Proceedings of the 6th SIAM International Conference on Data Mining (SDM), Bethesda, MD (2006)
Sun, P., Chawla, S.: On local spatial outliers. In: Proceedings of the 4th IEEE International Conference on Data Mining (ICDM), Brighton, UK (2004)
Chawla, S., Sun, P.: SLOM: A new measure for local spatial outliers. Knowledge and Information Systems (KAIS) 9(4), 412–429 (2006)
Liu, X., Lu, C.T., Chen, F.: Spatial outlier detection: Random walk based approaches. In: Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS), San Jose, CA (2010)
Chen, F., Lu, C.T., Boedihardjo, A.P.: GLS-SOD: A generalized local statistical approach for spatial outlier detection. In: Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Washington, DC (2010)
Achtert, E., Kriegel, H.P., Zimek, A.: ELKI: a software system for evaluation of subspace clustering algorithms. In: Proceedings of the 20th International Conference on Scientific and Statistical Database Management (SSDBM), Hong Kong, China (2008)
Achtert, E., Bernecker, T., Kriegel, H.P., Schubert, E., Zimek, A.: ELKI in time: ELKI 0.2 for the performance evaluation of distance measures for time series. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 436–440. Springer, Heidelberg (2009)
Achtert, E., Kriegel, H.P., Reichert, L., Schubert, E., Wojdanowski, R., Zimek, A.: Visual evaluation of outlier detection models. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 396–399. Springer, Heidelberg (2010)
Huang, T., Qin, X.: Detecting outliers in spatial database. In: Proceedings of the 3rd International Conference on Image and Graphics, Hong Kong, China, pp. 556–559
Hu, T., Sung, S.: A trimmed mean approach to finding spatial outliers. Intelligent Data Analysis 8(1), 79–95 (2004)
Breunig, M.M., Kriegel, H.P., Ng, R., Sander, J.: LOF: Identifying density-based local outliers. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), Dallas, TX (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Achtert, E., Hettab, A., Kriegel, HP., Schubert, E., Zimek, A. (2011). Spatial Outlier Detection: Data, Algorithms, Visualizations. In: Pfoser, D., et al. Advances in Spatial and Temporal Databases. SSTD 2011. Lecture Notes in Computer Science, vol 6849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22922-0_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-22922-0_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22921-3
Online ISBN: 978-3-642-22922-0
eBook Packages: Computer ScienceComputer Science (R0)