Skip to main content

An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2011, RANDOM 2011)

Abstract

A spanning tree T of a graph G is called a tree t-spanner of G if the distance between every pair of vertices in T is at most t times their distance in G. In this paper, we present an algorithm which constructs for an n-vertex m-edge unweighted graph G: (1) a tree \((2\lfloor\log_2 n\rfloor)\)-spanner in O(mlogn) time, if G is a chordal graph; (2) a tree \((2\rho\lfloor\log_2 n\rfloor)\)-spanner in O(mnlog2 n) time or a tree \((12\rho\lfloor\log_2 n\rfloor)\)-spanner in O(mlogn) time, if G is a graph admitting a Robertson-Seymour’s tree-decomposition with bags of radius at most ρ in G; and (3) a tree \((2\lceil{t/2}\rceil\lfloor\log_2 n\rfloor)\)-spanner in O(mnlog2 n) time or a tree \((6t\lfloor\log_2 n\rfloor)\)-spanner in O(mlogn) time, if G is an arbitrary graph admitting a tree t-spanner. For the latter result we use a new necessary condition for a graph to have a tree t-spanner: if a graph G has a tree t-spanner, then G admits a Robertson-Seymour’s tree-decomposition with bags of radius at most ⌈t/2⌉ in G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Bartal, Y., Neiman, O.: Nearly Tight Low Stretch Spanning Trees. In: FOCS, pp. 781–790 (2008)

    Google Scholar 

  2. Alon, N., Karp, R.M., Peleg, D., West, D.B.: A Graph-Theoretic Game and Its Application to the k-Server Problem. SIAM J. Comput. 24, 78–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bǎdoiu, M., Indyk, P., Sidiropoulos, A.: Approximation algorithms for embedding general metrics into trees. In: SODA 2007, pp. 512–521. SIAM, Philadelphia (2007)

    Google Scholar 

  4. Berge, C.: Hypergraphs. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  5. Brandstädt, A., Dragan, F.F., Le, H.-O., Le Tree Spanners, V.B.: on Chordal Graphs: Complexity and Algorithms. Theoret. Comp. Science 310, 329–354 (2004)

    Article  MathSciNet  Google Scholar 

  6. Brandstädt, A., Dragan, F.F., Le, H.-O., Le, V.B., Uehara, R.: Tree spanners for bipartite graphs and probe interval graphs. Algorithmica 47, 27–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buneman, A.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discr. Math. 8, 359–387 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chepoi, V.D., Dragan, F.F., Newman, I., Rabinovich, Y., Vaxes, Y.: Constant Approximation Algorithms for Embedding Graph Metrics into Trees and Outerplanar Graphs. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 95–109. Springer, Heidelberg (2010)

    Google Scholar 

  10. Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383, 34–44 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Mathematics 307, 2008–2029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dragan, F.F., Fomin, F., Golovach, P.: Spanners in sparse graphs. J. Computer and System Sciences (2010), doi: 10.1016/j.jcss.2010.10.002

    Google Scholar 

  13. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-Stretch Spanning Trees. SIAM J. Comput. 38, 608–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. SIAM J. Comput. 38, 1761–1781 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fekete, S.P., Kremer, J.: Tree spanners in planar graphs. Discrete Appl. Math. 108, 85–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–488. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory (B) 16, 47–56 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J. Algebraic Discrete Methods 5, 306–313 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liebchen, C., Wünsch, G.: The zoo of tree spanner problems. Discrete Appl. Math. 156, 569–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lokshtanov, D.: On the complexity of computing tree-length. Discrete Appl. Math. 158, 820–827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peleg, D.: Low Stretch Spanning Trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Peleg, D., Reshef, E.: Low complexity variants of the arrow distributed directory. J. Comput. System Sci. 63, 474–485 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peleg, D., Tendler, D.: Low stretch spanning trees for planar graphs, Tech. Report MCS01-14, Weizmann Science Press of Israel, Israel (2001)

    Google Scholar 

  24. Makowsky, J.A., Rotics, U.: Optimal spanners in partial k-trees, manuscript

    Google Scholar 

  25. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. http://www.cs.kent.edu/~dragan/papers/Approx-tree-spanner-FullVers.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Köhler, E. (2011). An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics