Abstract
A spanning tree T of a graph G is called a tree t-spanner of G if the distance between every pair of vertices in T is at most t times their distance in G. In this paper, we present an algorithm which constructs for an n-vertex m-edge unweighted graph G: (1) a tree \((2\lfloor\log_2 n\rfloor)\)-spanner in O(mlogn) time, if G is a chordal graph; (2) a tree \((2\rho\lfloor\log_2 n\rfloor)\)-spanner in O(mnlog2 n) time or a tree \((12\rho\lfloor\log_2 n\rfloor)\)-spanner in O(mlogn) time, if G is a graph admitting a Robertson-Seymour’s tree-decomposition with bags of radius at most ρ in G; and (3) a tree \((2\lceil{t/2}\rceil\lfloor\log_2 n\rfloor)\)-spanner in O(mnlog2 n) time or a tree \((6t\lfloor\log_2 n\rfloor)\)-spanner in O(mlogn) time, if G is an arbitrary graph admitting a tree t-spanner. For the latter result we use a new necessary condition for a graph to have a tree t-spanner: if a graph G has a tree t-spanner, then G admits a Robertson-Seymour’s tree-decomposition with bags of radius at most ⌈t/2⌉ in G.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham, I., Bartal, Y., Neiman, O.: Nearly Tight Low Stretch Spanning Trees. In: FOCS, pp. 781–790 (2008)
Alon, N., Karp, R.M., Peleg, D., West, D.B.: A Graph-Theoretic Game and Its Application to the k-Server Problem. SIAM J. Comput. 24, 78–100 (1995)
Bǎdoiu, M., Indyk, P., Sidiropoulos, A.: Approximation algorithms for embedding general metrics into trees. In: SODA 2007, pp. 512–521. SIAM, Philadelphia (2007)
Berge, C.: Hypergraphs. North-Holland, Amsterdam (1989)
Brandstädt, A., Dragan, F.F., Le, H.-O., Le Tree Spanners, V.B.: on Chordal Graphs: Complexity and Algorithms. Theoret. Comp. Science 310, 329–354 (2004)
Brandstädt, A., Dragan, F.F., Le, H.-O., Le, V.B., Uehara, R.: Tree spanners for bipartite graphs and probe interval graphs. Algorithmica 47, 27–51 (2007)
Buneman, A.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212 (1974)
Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discr. Math. 8, 359–387 (1995)
Chepoi, V.D., Dragan, F.F., Newman, I., Rabinovich, Y., Vaxes, Y.: Constant Approximation Algorithms for Embedding Graph Metrics into Trees and Outerplanar Graphs. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 95–109. Springer, Heidelberg (2010)
Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383, 34–44 (2007)
Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Mathematics 307, 2008–2029 (2007)
Dragan, F.F., Fomin, F., Golovach, P.: Spanners in sparse graphs. J. Computer and System Sciences (2010), doi: 10.1016/j.jcss.2010.10.002
Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-Stretch Spanning Trees. SIAM J. Comput. 38, 608–628 (2008)
Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. SIAM J. Comput. 38, 1761–1781 (2008)
Fekete, S.P., Kremer, J.: Tree spanners in planar graphs. Discrete Appl. Math. 108, 85–103 (2001)
Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–488. Springer, Heidelberg (2001)
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory (B) 16, 47–56 (1974)
Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J. Algebraic Discrete Methods 5, 306–313 (1984)
Liebchen, C., Wünsch, G.: The zoo of tree spanner problems. Discrete Appl. Math. 156, 569–587 (2008)
Lokshtanov, D.: On the complexity of computing tree-length. Discrete Appl. Math. 158, 820–827 (2010)
Peleg, D.: Low Stretch Spanning Trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)
Peleg, D., Reshef, E.: Low complexity variants of the arrow distributed directory. J. Comput. System Sci. 63, 474–485 (2001)
Peleg, D., Tendler, D.: Low stretch spanning trees for planar graphs, Tech. Report MCS01-14, Weizmann Science Press of Israel, Israel (2001)
Makowsky, J.A., Rotics, U.: Optimal spanners in partial k-trees, manuscript
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)
http://www.cs.kent.edu/~dragan/papers/Approx-tree-spanner-FullVers.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dragan, F.F., Köhler, E. (2011). An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-22935-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22934-3
Online ISBN: 978-3-642-22935-0
eBook Packages: Computer ScienceComputer Science (R0)