Skip to main content

Algorithmic Extensions of Cheeger’s Inequality to Higher Eigenvalues and Partitions

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2011, RANDOM 2011)

Abstract

We consider two generalizations of the problem of finding a sparsest cut in a graph. The first is to find a partition of the vertex set into m parts so as to minimize the sparsity of the partition (defined as the ratio of the weight of edges between parts to the total weight of edges incident to the smallest m − 1 parts). The second is to find a subset of minimum sparsity that contains at most a 1/m fraction of the vertices. Our main results are extensions of Cheeger’s classical inequality to these problems via higher eigenvalues of the graph. In particular, for the sparsest m-partition, we prove that the sparsity is at most \(8\sqrt{1-\lambda_m} \log m\) where λ m is the m th largest eigenvalue of the normalized adjacency matrix. For sparsest small-set, we bound the sparsity by \(O(\sqrt{(1-\lambda_{m^2})\log m})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for unique games and related problems. In: FOCS (2010)

    Google Scholar 

  2. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Milman, V.D.: lambda\(_{\mbox{1}}\), isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory, Ser. B 38(1), 73–88 (1985)

    Article  MATH  Google Scholar 

  4. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph partitioning. In: Babai, L. (ed.) STOC, pp. 222–231. ACM, New York (2004)

    Google Scholar 

  5. Borell, C.: Geometric bounds on the ornstein-uhlenbeck velocity process. Probability Theory and Related Fields 70, 1–13 (1985), doi:10.1007/BF00532234

    Article  MathSciNet  MATH  Google Scholar 

  6. Khandekar, R., Rao, S., Vazirani, U.V.: Graph partitioning using single commodity flows. In: Kleinberg, J.M. (ed.) STOC, pp. 385–390. ACM, New York (2006)

    Google Scholar 

  7. Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J. ACM 51(3), 497–515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture. In: Schulman, L.J. (ed.) STOC, pp. 755–764. ACM, New York (2010)

    Google Scholar 

  10. Raghavendra, P., Steurer, D., Tetali, P.: Approximations for the isoperimetric and spectral profile of graphs and related parameters. In: STOC, pp. 631–640 (2010)

    Google Scholar 

  11. Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions between expansion problems (2010) (manuscript)

    Google Scholar 

  12. Sherman, J.: Breaking the multicommodity flow barrier for \(\mathcal{O}\)(\(\sqrt{logn}\))-approximations to sparsest cut. In: FOCS, pp. 363–372, IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  13. Steurer, D.: Personal communication (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Louis, A., Raghavendra, P., Tetali, P., Vempala, S. (2011). Algorithmic Extensions of Cheeger’s Inequality to Higher Eigenvalues and Partitions. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics