Abstract
We believe that the lateral exploration of surfaces with varying stiffness, stiffness maps, using computer generated haptics is an underestimated and important procedure with impact in many application areas. Feeling the change of stiffness while sweeping the haptic probe over a surface can potentially give an understanding of the spatial distribution of this stiffness, however current algorithms lack tangential cues of stiffness changes. This introduces energy sources and sinks that potentially affects the stability of the system, apart from being physically incorrect and thus unrealistic. We discuss the forces and effects involved in the exploration of stiffness maps and propose an energy-based algorithm for tangential forces that augments the feedback from the map, in particular during lateral exploration. The algorithm is based on basic physical principles and has the potential to increase both realism and stability. A user study was conducted to analyze the effect of this algorithm on stiffness perception.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armstrong, J.S.: Significance tests harm progress in forecasting. International Journal of Forecasting 23, 321–327 (2007)
Cheon, J., Choi, S.: Perceptualizing a “Haptic edge” with varying stiffness based on force constancy. In: Pan, Z., Cheok, D.A.D., Haller, M., Lau, R., Saito, H., Liang, R. (eds.) ICAT 2006. LNCS, vol. 4282, pp. 392–405. Springer, Heidelberg (2006)
Cheon, J., Choi, S.: Haptizing a surface height change with varying stiffness based on force consistency: Effect of surface normal rendering. In: Proceedings of the World Haptics Conference (2007)
Cheon, J., Hwang, I., Han, G., Choi, S.: Haptizing surface topography with varying stiffness based on force constancy: Extended algorithm. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2008)
Choi, S., Walker, L., Tan, H.Z., Crittenden, S., Reifenberger, R.: Force constancy and its effect on haptic perception of virtual surfaces. ACM Transactions on Applied Perception 2(2), 89–105 (2005)
Coles, T., John, N.W., Gould, D.A., Caldwell, D.G.: Haptic palpation for the femoral pulse in virtual interventional radiology. In: Proceedings of Advances in Computer-Human Interactions (2009)
Hutchins, M.: A constraint equation algebra as a basis for haptic rendering. In: Proceedings of Phantom User Group Workshop (2000)
Klymenko, V., Pizer, S.M., Johnston, R.E.: Visual psychophysics and medical imaging: Nonparametric adaptive method for rapid threshold estimation in sensitivity experiments. IEEE Transactions on Medical Imaging 9(4), 353–365 (1990)
Lawrence, D.A., Pao, L.Y., Dougherty, A.M., Salada, M.A., Pavlou, Y.: Ratehardness: A new performance metric for haptic interfaces. IEEE Transactions on Robotics and Automation 16(4), 357–371 (2000)
Lederman, S.J., Klatzky, R.L.: Hand movements: A window into haptic object recognition. Cognitive Psychology 19(3), 342–368 (1987)
Levitt, H.: Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America 49(2), 467–477 (1971)
Massie, T.H., Salisbury, J.K.: The phantom haptic interface: A device for probing virtual objects. In: Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (1994)
Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environments. Computer Graphics 31(Annual Conference Series), 345–352 (1997)
Salisbury, K., Brock, D., Massie, T., Swarup, N., Zilles, C.: Haptic rendering: Programming touch interaction with virtual objects. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics (1995)
Yano, H., Nudejima, M., Iwata, H.: Development of haptic rendering methods of rigidity distribution for tool-handling type haptic interface. In: Proceedings of the World Haptics Conference (2005)
Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: Proceedings of IEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction, and Cooperative Robots, vol. 3, pp. 146–151 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Palmerius, K.L. (2011). Adding Tangential Forces in Lateral Exploration of Stiffness Maps. In: Cooper, E.W., Kryssanov, V.V., Ogawa, H., Brewster, S. (eds) Haptic and Audio Interaction Design. HAID 2011. Lecture Notes in Computer Science, vol 6851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22950-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-22950-3_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22949-7
Online ISBN: 978-3-642-22950-3
eBook Packages: Computer ScienceComputer Science (R0)