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Abstract. For an integer k ≥ 1, a graph G is k-colorable if there exists a map-
ping c : VG → {1, . . . , k} such that c(u) 6= c(v) whenever u and v are two
adjacent vertices. For a fixed integer k ≥ 1, the k-COLORING problem is that
of testing whether a given graph is k-colorable. The girth of a graph G is the
length of a shortest cycle in G. For any fixed g ≥ 4 we determine a lower bound
`(g), such that every graph with girth at least g and with no induced path on `(g)
vertices is 3-colorable. We also show that for all fixed integers k, ` ≥ 1, the k-
COLORING problem can be solved in polynomial time for graphs with no induced
cycle on four vertices and no induced path on ` vertices. As a consequence, for
all fixed integers k, ` ≥ 1 and g ≥ 5, the k-COLORING problem can be solved
in polynomial time for graphs with girth at least g and with no induced path on
` vertices. This result is best possible, as we prove the existence of an integer `∗,
such that already 4-COLORING is NP-complete for graphs with girth 4 and with
no induced path on `∗ vertices.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by k integers
called colors such that no two adjacent vertices receive the same color. Due to the fact
that the corresponding decision problem k-COLORING is NP-complete for any fixed
k ≥ 3, there has been considerable interest in studying its complexity when restricted
to certain graph classes, see e.g. the surveys of Randerath and Schiermeyer [32] and
Tuza [36]. We focus on graph classes defined by forbidden induced subgraphs. Before
we summarize the known results and explain our new results, we first state the necessary
terminology and notations.

1.1 Terminology

We only consider finite undirected graphs with no loops and no multiple edges. We
refer to the textbook by Bondy and Murty [3] for any undefined graph terminology. Let
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G = (V,E) be a graph. We write G[U ] to denote the subgraph of G induced by the
vertices in U , that is, the subgraph of G with vertex set U and an edge between two
vertices u, v ∈ U whenever uv ∈ E. The length of a path or cycle is the number of
its edges. The graphs Cn and Pn denote the cycle and path on n vertices, respectively.
The graph Kr,s denotes the complete bipartite graph with partition classes of size r
and s, respectively. The disjoint union of two graphs G and H is denoted G +H , and
the disjoint union of r copies of G is denoted rG. A linear forest is the disjoint union
of a collection of paths. Let G be a graph and {H1, . . . ,Hp} be a set of graphs. We
say that G is (H1, . . . ,Hp)-free if G has no induced subgraph isomorphic to a graph
in {H1, . . . ,Hp}; if p = 1, we sometimes write H1-free instead of (H1)-free. If G is
C3-free, then we also say that G is triangle-free. The girth g(G) of G is the length of a
shortest cycle in G. Note that G has girth at least p for some integer p ≥ 4 if and only
if G is (C3, . . . , Cp−1)-free.

A k-coloring of a graph G = (V,E) is a mapping φ : V → {1, . . . , k} such
that φ(u) 6= φ(v) whenever uv ∈ E. We say that φ(u) is the color of u. If G has
a k-coloring, then G is said to be k-colorable. The chromatic number χ(G) of G is
the smallest k such that G is k-colorable. If χ(G) = k, then we also say that G is
k-chromatic. The COLORING problem is that of testing whether a given graph admits a
k-coloring for some given integer k. If k is fixed, that is, not part of the input, then we
denote this problem as k-COLORING. The problem k-PRECOLORING EXTENSION is
that of deciding whether a given mapping φW :W → {1, . . . , k} defined on a (possibly
empty) subset W ⊆ V of a graph G = (V,E) can be extended to a k-coloring of G.

1.2 Related Work

Král’ et al. [22] completely determined the computational complexity of COL-
ORING for graph classes characterized by one forbidden induced subgraph H . They
showed that COLORING can be solved in polynomial time for H-free graphs if H is an
induced subgraph of P4 or of P1 + P3, and that this problem is NP-complete if H is
any other graph.

The computational complexity of the COLORING problem for (H1, H2)-free graphs
where H1 and H2 are two distinct graphs is still open, although several partial re-
sults are known. In particular (C3, H)-free graphs, or equivalently, H-free graphs with
girth at least 4, are well studied. Král’ et al. [22] showed that for any graph H that
contains at least one cycle, 3-COLORING, and hence COLORING, is NP-complete for
(C3, H)-free graphs. Their work was extended by Schindl [34]. Maffray and Preiss-
mann [28] showed that 3-COLORING and consequently, COLORING is NP-complete
for (C3,K1,5)-free graphs. Broersma et al. [8] showed that COLORING is polynomial-
time solvable for (C3, 2P3)-free graphs, thereby completing a study of Dabrowski et
al. [11], who considered the COLORING problem restricted to (C3, H)-free graphs for
graphs H with |VH | ≤ 6.

The computational complexity classification of k-COLORING for H-free graphs
where k is a fixed integer and H is a fixed graph is also still open, but the following is
known. Král’ et al. [22] showed that 3-COLORING is NP-complete for graphs of girth at
least g for any fixed g ≥ 3. Kamiński and Lozin [21] used a similar reduction to show
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that k-COLORING is NP-complete for graphs of girth at least g for any fixed k ≥ 3
and g ≥ 3. Hence, for all k ≥ 3, k-COLORING is NP-complete for H-free graphs if H
contains a cycle. Holyer [18] showed that 3-COLORING is NP-complete for line graphs,
whereas Leven and Galil [25] showed that k-COLORING is also NP-complete on line
graphs for k ≥ 4. Because every line graph is claw-free, that is, has no induced K1,3,
this means that for all k ≥ 3, k-COLORING is NP-complete for H-free graphs if H is a
forest that contains a vertex with degree at least 3. Hence, only the case in which H is a
linear forest remains. Huang [19] proved that 4-COLORING is NP-complete for P7-free
graphs and that 5-COLORING is NP-complete for P6-free graphs. In contrast to these
hardness results, Couturier et al. [10] generalized a result for P5-free graphs of Hoàng
et al. [17] by proving that for any fixed integers k and r, the k-COLORING problem
can be solved in polynomial time for (P5 + rP1)-free graphs, whereas Randerath and
Schiermeyer [31] showed that 3-COLORING can be solved in polynomial time for P6-
free graphs. Broersma et al. [7] extended the latter result by showing that 3-COLORING
is polynomial-time solvable for H-free graphs if H is a linear forest with |VH | ≤ 6 or
H = rP3 for any integer r. Moreover, it is known that 4-COLORING is polynomial-time
solvable for (P2 + P3)-free graphs [14].

The k-COLORING problem has also been studied for (H1, H2)-free graphs where
H1 and H2 are two distinct graphs. We refer to Randerath and Schiermeyer [32] for
a detailed survey on so-called good Vizing-pairs (A,B) that satisfy the condition that
every (A,B)-free graph is 3-colorable, in particular when A = C3. Brandt [4] showed
that every (C3, sP2)-free graph is (2s− 2)-colorable for any s ≥ 3.

1.3 Our Results

We consider the relation between the girth of a graph and the length of a forbidden in-
duced path for the k-COLORING problem. As a start, note that graphs with girth g =∞
are forests, and consequently, these graphs are 2-colorable. What if g is finite? In Sec-
tion 2 we determine, for any fixed girth g ≥ 4, a lower bound `(g) such that every P`(g)-
free graph with girth at least g is 3-colorable. This extends the result of Sumner [35]
who showed that every P5-free graph of girth at least 4 is 3-colorable complementing a
result of Randerath and Schiermeyer [32], who showed that for all ` ≥ 4, every P`-free
graph of girth at least 4 is (` − 2)-colorable. Our results lead to Table 1. Note that for
the cases g ∈ {4, 5, 7} the lower bounds are slightly worse than the lower bound for
the general case g ≥ 8; the difference between them is 1. The proofs of the results
in Table 1 are constructive, that is, they yield polynomial-time algorithms for solving
3-COLORING on these graph classes.

In Section 3.1 we show that for all integers k, `, r, s ≥ 1, the k-COLORING prob-
lem is polynomial-time solvable on (Kr,s, P`)-free graphs by using a recent result of
Atminas, Lozin and Razgon [1]. By taking r = s = 2, we obtain that for all inte-
gers k, ` ≥ 1, the k-COLORING problem is polynomial-time solvable on (C4, P`)-free
graphs. Consequently, for all integers g ≥ 5 and k, ` ≥ 1, the k-COLORING problem
is polynomial-time solvable on P`-free graphs of girth at least g. As every graph has
girth at least 3, and 3-COLORING is NP-complete in general, the case g = 4 remains.
We solve this case in Section 3.2 by showing that even 4-COLORING is NP-complete
for (C3, P164)-free graphs, that is, for P164-free graphs of girth at least g = 4. This is a
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g forbidden induced path
4 P5-free [35]
5 P7-free
6 P10-free
7 P12-free

≥ 8 P`-free for ` = 2g + d g−2
4
e − 3

Table 1. 3-colorable P`-free graphs of given girth g.

new result as all the gadgets used in the proofs of the aforementioned NP-completeness
results on k-COLORING for P`-free graphs are not triangle-free, that is, have girth equal
to 3. We expect that ` = 164 can be improved, but emphasize that our aim was to show
the existence of such an integer ` rather than to minimize it. Moreover, this is also the
first known NP-completeness result on COLORING for (C3, P`)-free graphs. As such
it also fits into the aforementioned complexity study of COLORING for (H1, H2)-free
graphs initiated by Král’ et al. [22] and Schindl [34]. Our hardness result complements
the result of Kratochvı́l [23] who showed that 5-PRECOLORING EXTENSION is NP-
complete for P13-free bipartite graphs.

In Section 3.2 we also show that for all r ≥ 5, there exists a constant `(r) such
that 4-COLORING is NP-complete for (C5, . . . , Cr, P`(r))-free graphs. In particular, we
show that already 4-COLORING for (C5, P23)-free graphs is NP-complete. Hence we
have two complexity jumps when the length of the forbidden induced cycle increases,
as can be seen in Table 2.

r complexity
3 NP-complete for k = 4 and ` ≥ 164
4 polynomial-time solvable for k ≥ 1 and ` ≥ 1

≥ 5 NP-complete for k = 4 and ` ≥ `(r)

Table 2. The computational complexity of k-COLORING for (Cr, P`)-free graphs. Here, `(r) is
a fixed constant that only depends on r.

Very recently, Hell and Huang [16] extended the results in Table 2 by showing that
k-COLORING is NP-complete on (Cr, P`)-free graphs in the following cases:

(i) k = 4, 5 ≤ r ≤ 6 and ` ≥ 7
(ii) k = 4, r = 7 and ` ≥ 9

(iii) k = 4, r ≥ 8 and ` ≥ 7
(iv) k ≥ 5, r = 5 and ` ≥ 7
(v) k ≥ 5, r ≥ 6 and ` ≥ 6.

1.4 Future Work

A classical result of Erdös [12] tells us that for every pair of integers k and g, there
exists a k-chromatic graph Gg

k of girth g. This result immediately implies that there
also exists a P`-free k-chromatic graph of girth g, as we can take ` = |VGg

k
| + 1. The
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proof of Erdös [12] is probabilistic, but we can obtain a P`-free k-chromatic graph
of girth g by using the constructive proof of Lovász [26] or of Nešetřil and Rödl [29].
However, in general it is not trivial to construct, for given k and g, a k-chromatic P`-free
graph of girth g for ` as small as possible, or, for given k and `, a k-chromatic P`-free
graph of girth g for g as large as possible. For example, the Grötzsch graph [15] is 4-
chromatic, P6-free and of girth 4. Hence, the bound of Sumner [35] is tight. Brinkmann
and Meringer [6] constructed a 4-chromatic P10-free graph with girth 5. Hence, the
bound in Table 1 for P10-free graphs is tight with respect to the girth. We are not aware
of examples of 4-chromatic graphs of girth at least 6 without long induced paths and
expect that some of our bounds in Table 1 can be improved.

The aforementioned results of Hell and Huang [16], which improve the results in
Table 2, combined with our result for k = 4, r = 3 and ` = 164 and the known
polynomial-time results for k-COLORING on P`-free graphs (namely the cases k ≥ 1,
` ≤ 5 [17] and k = 3, ` = 6 [31]) leave a number of cases open in the computa-
tional complexity classification of k-COLORING for (Cr, P`)-free graphs. An intrigu-
ing question is to determine the computational complexity of 3-COLORING restricted to
(C3, P`)-free graphs for all integers `. It is known that the class of (C3, P6)-free graphs
have bounded clique-width [5]. Hence, even COLORING is polynomial-time solvable
on (C3, P6)-free graphs (see e.g. [11]). The clique-width of the class of bipartite 2P3-
free graphs [27], and hence of the class of (C3, P7)-free graphs, is unbounded. Very
recently, Chudnovsky, Maceli and Zhong announced a polynomial-time algorithm for
solving 3-COLORING on P7-free graphs. Their result implies that (C3, P8)-free graphs
form the first graph class to look at when trying to show polynomial-time solvability for
(C3, P`)-free graphs for some integer `. On the other hand, there is no integer ` known
for which 3-COLORING is NP-complete on (C3, P`)-free graphs. In fact, an affirmative
answer to this question would solve a well-known open problem, namely whether such
an integer ` exists for 3-COLORING restricted to P`-free graphs [7, 17, 24, 31, 37].

2 The Lower Bounds for 3-Colorability

We start with some additional terminology. We say that a path between two vertices u
and v in G is a (u, v)-path. The distance between u and v is the length of a shortest
(u, v)-path in G and is denoted dist(u, v). For a vertex v and subset U ⊆ V we define
dist(v, U) = min{dist(v, u) | u ∈ U}; note that dist(v, U) = 0 if and only if v ∈ U .
We denote the neighborhood of a vertex u by N(u) = {v | uv ∈ E} and its degree
by deg(u) = |N(u)|. For a subset U ⊆ V and an integer s, we define Ns(U) = {v ∈
V | dist(v, U) = s} and Ns[U ] = {v ∈ V | dist(v, U) ≤ s}.

In order to prove the bounds in Table 1 we make two assumptions that are valid
throughout this section. First of all, we may assume that the graphs we consider are
connected. Second, we may assume that they have minimum degree at least 3 due to
the following observation.

Observation. Let G be a graph and u be a vertex of degree at most 2. Then G is 3-
colorable if and only if G− u is 3-colorable.

Hence, we may remove vertices of degree at most 2 consecutively until the resulting
graph has minimum degree at least 3. Note that removing a vertex of degree 2 from a
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graph may increase its girth. However, this is not a problem, because the bounds in
Table 1 improve for increasing girth.

We show the four new bounds in Table 1 in Theorems 1–4, respectively.

Theorem 1. Every P7-free graph of girth at least 5 is 3-colorable.

Proof. Let G = (V,E) be a connected P7-free graph with minimum degree at least 3
and girth at least 5. If g(G) = 6, g(G) = 7 or g(G) ≥ 8, then we refer to Theorems 2, 3
or 4, respectively. Suppose that g(G) = 5. Consider uv ∈ E and let U = {u, v}. We
first prove four useful properties of the sets Ns(U):

1. N1(U) is an independent set;
2. N2(U) induces a bipartite graph;
3. N3(U) is an independent set;
4. Ns(U) = ∅ for s ≥ 4.

Property 1 immediately follows from the (C3, C4)-freeness of G. We prove prop-
erty 2 as follows. In order to obtain a contradiction, suppose thatG[N2(U)] contains an
odd induced cycle Cr = x1x2 · · ·xrx1. Because g(G) = 5 and G is P7-free, r = 5 or
r = 7. Let w be a vertex inN1(U) adjacent to x1 and assume without loss of generality
that w is adjacent to u. Then wv /∈ E. If r = 5, then w is not adjacent to x2, . . . , x5,
because g(G) = 5. Note that x1x2x3x4 is an induced path in G. Then vuwx1 · · ·x4 is
an induced P7. Hence r = 7. Because g(G) = 5, we find that w is adjacent to none of
the vertices x2, x3, x6, x7. Note that x1x2x3x4 and x1x7x6x5 are induced paths inG. If
w is not adjacent to x4, then vuwx1 · · ·x4 is an induced P7. Hence, w must be adjacent
to x4. If w is not adjacent to x5, then vuwx1x7x6x5 is an induced P7. Hence, w must
be adjacent to x5. However, now we have a triangle wx4x5w, which is not possible
because g(G) = 5. We conclude that property 2 must hold.

We prove property 4 before property 3. Suppose that property 4 is not true. First
suppose that N5(U) 6= ∅. Then, for a vertex x ∈ N5(U), there is a path w1 · · ·w4x
where wi ∈ N i(U). We assume without loss of generality that w1 is adjacent to u.
However, then vuw1 · · ·w4x is an induced P7. Hence N5(U) = ∅, and consequently,
Ns(U) = ∅ for s ≥ 5. This means that for property 4 not to hold, we must have
N4(U) 6= ∅.

First suppose thatG[N4(U)] contains an edge xy. There is a pathw1w2w3 such that
w1 ∈ N1(U), w2 ∈ N2(U), w3 ∈ N3(U) and w3x ∈ E. Assuming that uw1 ∈ E, we
get the induced path vuw1w2w3xy isomorphic to P7. Hence, such an edge xy does not
exist, implying that N4(U) is an independent set. Suppose that a vertex x ∈ N4(U) is
adjacent to at least two vertices z1 and z2 in N3(U) and let uw1w2z1x be a (u, x)-path
in G. Because g(G) = 5, we find that z1z2 /∈ E and w2z2 /∈ E. Then vuw1w2z1xz2
is an induced P7. Hence, x is adjacent to exactly one vertex in N3(U). Recall that
N5(U) = ∅. Then we find that d(x) = 1. However, G has no such vertices, because G
has minimum degree at least 3. We conclude that property 4 must hold.

For the proof of property 3, we first suppose that x1x2x3 is an induced path in
G[N3(U)]. Then there are adjacent vertices w1 ∈ N1(U) and w2 ∈ N2(U) such
that w2x1 ∈ E. Because w1 is adjacent to a vertex in U , we assume without loss of
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generality that w1 is adjacent to u and get the path vuw1w2x1x2x3. Because g(G) ≥ 5,
this path is an induced P7. Hence G[N3(U)] is P3-free.

We now suppose that xy is an edge in G[N3(U)]. Because G has minimum degree
at least 3 and G[N3(U)] is P3-free, y is adjacent to at least two vertices z1 and z2 in
N2(U). By definition, there are adjacent vertices w1 ∈ N1(U) and w2 ∈ N2(U) such
that w2x ∈ E, and we can assume that uw1 ∈ E. Because g(G) = 5, we find that
z1, z2, w2 are three different vertices that are pairwise non-adjacent, and that z1w1 and
z2w1 cannot be both edges in G. We assume without loss of generality that z1w1 /∈ E.
Then vuw1w2xyz1 is an induced P7, which is not possible. We conclude that property 3
must hold, and we have proven all four properties.

Using these four properties we construct a 3-coloring of G as follows. We color the
vertices u and v with colors 1 and 2 respectively, and all the vertices of the independent
set N1(U) with color 3. The vertices of the bipartite graph G[N2(U)] are colored with
colors 1 and 2. Finally, the vertices of the independent set N3(U) are colored with
color 3. This completes the proof of Theorem 1. ut

Theorem 2. Every P10-free graph of girth at least 6 is 3-colorable.

Proof. Let G = (V,E) be a connected P10-free graph with minimum degree at least 3
and girth at least 6. If g(G) = 7 or g(G) ≥ 8, then we refer to Theorems 3 or 4,
respectively. Suppose that g(G) = 6. Let U = {x1, . . . , x6} be the vertex set of a C6

in G (vertices are enumerated in cyclic order). We observe that this 6-vertex cycle is
induced, because g(G) = 6. Let Xi denote the set of vertices of N1(U) adjacent to xi
for i = 1, . . . , 6. Using the (C3, C4, C5)-freeness of G, we observe the following:

1. Xi is independent for 1 ≤ i ≤ 6;
2. Xi ∩Xj = ∅ for 1 ≤ i < j ≤ 6;
3. if yiyj ∈ E for yi ∈ Xi, yj ∈ Xj and 1 ≤ i < j ≤ 6, then j − i = 3.

Let H1, . . . ,Hk be the connected components of G[V \ N1[U ]]. We need the fol-
lowing claim.

Claim 1. Each graph Hj is either an isolated vertex or a star K1,r for some r ≥ 1.

We prove Claim 1 as follows. Consider a graph Hj for some 1 ≤ j ≤ k. First we
show that Hj is P4-free. In order to obtain a contradiction, suppose that Hj contains
an induced path v1v2v3v4. Let z1 · · · zs be a shortest path such that z1 ∈ U and zs ∈
{v1, . . . , v4}. Without loss of generality we assume that z1 = x1, z2 ∈ X1 and either
zs = v1 or zs = v2.

Because g(G) = 6, we find that zs−1 is adjacent to exactly one vertex of the path
v1v2v3v4. If zs = v1 then x5x4 · · ·x1z2 · · · zs−1v2 · · · v4 is an induced path with at
least 10 vertices. Hence zs = v2, and moreover, any shortest path between U and
{v1, . . . , v4} contains neither v1 nor v4. If s ≥ 4 then x5x4 · · ·x1z2 · · · zs−1v2v3v4 is
an induced path with at least 10 vertices. Hence s = 3, that is., v2 is adjacent to a vertex
of X1. If v4 is adjacent to a vertex y in some set Xj then xjyv4 is another shortest
path between U and {v1, . . . , v4}. However, we already deduced that such paths do
not contain v4. Hence, v4 /∈ N2[U ]. The graph G has no vertices of degree one, and
therefore v4 is adjacent to a vertex w ∈ VHj

. Because g(G) = 6, we find that w is not
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adjacent to v1, v2, v3 or z2. This means that x5x4 · · ·x1z2v2v3v4w is an induced P10.
This is not possible. Hence, Hj is P4-free. Observe that every connected P4-free graph
without an induced C3 or C4 is either an isolated vertex or a star. This completes the
proof of Claim 1.

We are now ready to construct a 3-coloring of G. Using properties 1–3, we color
vertices x1, x3, x5 and all vertices of X2, X4, X6 with color 1, and x2, x4, x6 and all
vertices of X1, X3, X5 with color 2. Now we color each Hj . If Hj consists of an iso-
lated vertex, then we color this vertex with color 3. Suppose that Hj is a star K1,r . Let
w be its central vertex and z1, . . . , zr be its leaves.

If w /∈ N2[U ], then we color z1, . . . , zr with color 3 and w with color 1. Now let
w be adjacent to a vertex of Xi for some 1 ≤ i ≤ 6. In this case we color w with
color 3. It remains to prove that each leaf zs can be colored with color 1 or 2. Suppose
that it is not so for some zs. Then zs is adjacent to two vertices in the sets X1, . . . , X6

that have color 1 and 2, respectively. By symmetry, we assume that zs is adjacent to
y1 ∈ X1. Because g(G) = 6, we find that zs is not adjacent to any vertices in X2

or X6, and therefore, zs must be adjacent to some vertex y4 ∈ X4 in order to have a
neighbor with color 1. Because g(G) = 6, we find that w is not adjacent to any vertices
of X1 ∪X4. By symmetry, we can assume that i = 2, i.e., that w is adjacent to a vertex
y2 ∈ X2. Because G has minimum degree at least 3 and x1x2 · · ·x6x1 is an induced
cycle in G, we find that X3 6= ∅. Let y3 ∈ X3. However, then y2wzsy1x1x6 · · ·x3y3
is an induced P10 due to g(G) = 6. This means that each zs is adjacent either only to
vertices colored 1 or only to vertices colored 2 in the sets X1, . . . , X6. In the first case
we can color zs with color 2, and in the second case we can color zs with color 1. This
completes the proof of Theorem 2. ut

Theorem 3. Every P12-free graph of girth at least 7 is 3-colorable.

Proof. Let G = (V,E) be a connected graph of girth at least 7. If g(G) ≥ 8, then we
refer to Theorem 4. Suppose that g(G) = 7. Let U = {x1, . . . , x7} be the vertex set of
a C7 in G (vertices are enumerated in cyclic order). We observe that this 7-vertex cycle
is induced, because g(G) = 7. LetXi denote the set of vertices ofN1(U) adjacent to xi
for i = 1, . . . , 7. Using the (C3, C4, C5, C6)-freeness of G, we observe the following:

1. Xi ∩Xj = ∅ for 1 ≤ i < j ≤ 7;
2. X1 ∪ . . . ∪X7 is independent.

Let H be the subgraph of G induced by the set V \ ({x1, . . . , x7}∪X1∪ · · ·∪X6);
note that X7 ⊆ VH . We claim that H is bipartite. In order to obtain a contradiction,
suppose that H contains an odd induced cycle Cr = v1v2 · · · vrv1. Because g(G) = 7
and G is P12-free, we deduce that r ∈ {7, 9, 11}. Let y1 · · · ys be a shortest path, such
that y1 ∈ U and ys ∈ {v1, . . . , vr}. We may assume without loss of generality that
ys = v1. By definition, s ≥ 2.

Suppose that r < 11. Then ys−1 is not adjacent to any vertex of {v2, . . . , vr}.
If y1 = x7, then G has an induced path x2 · · ·x6y1 · · · ysv2 · · · vr−1 with at least 12
vertices, which is not possible. If y1 = x1, then we find that G has an induced path
x6x5 · · ·x2y1 · · · ysv2 · · · vr−1 with at least 13 vertices, which is not possible either. If
y1 ∈ {x2, . . . , x6}, then we apply the same arguments as for the case y1 = x1.
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Suppose that r = 11. If ys−1 is adjacent to exactly one vertex of {v1, . . . , vr}, then
we use the same arguments as for the case r < 11. Let ys−1 be adjacent to at least
two vertices of {v1, . . . , vr}. Because g(G) = 7, we deduce that ys−1 is adjacent to
exactly two vertices, namely v1, v6 or v1, v7. By symmetry, we may assume that ys−1
is adjacent to v1, v7. If y1 = x7, then G has an induced path x2 · · ·x6y1 · · · ysv2 · · · v6
on at least 12 vertices, which is not possible. If y1 = x1, then G has an induced path
x6x5 · · ·x2y1 · · · ysv2 · · · v6 on at least 13 vertices, which is not possible either. If y1 ∈
{x2, . . . , x6}, then we apply the same arguments as for the case y1 = x1. We conclude
that H is bipartite.

We now color G as follows. We color x1, x3, x5 with color 1, x2, x4, x6 with color
2, the vertices of X1 ∪ · · · ∪X6 and x7 with color 3, and finally all the vertices of the
(bipartite) graph H with colors 1 and 2. This completes the proof of Theorem 3. ut

Theorem 4. Every Pk-free graph with k = 2g + d g−24 e − 3 and girth g ≥ 8 is 3-
colorable.

Proof. Let G = (V,E) be a connected graph of girth g ≥ 8. Let U = {x1, . . . , xg} be
the vertex set of a Cg in G (vertices are enumerated in cyclic order). We observe that
this g-vertex cycle is induced. Let s = d g−24 e − 1. We will prove the following two
properties of the sets N t(U):

1. N t(U) is independent for 1 ≤ t ≤ s;
2. each x ∈ N t(U) is adjacent to exactly one vertex in N t−1(U) for 1 ≤ t ≤ s.

We first prove property 1. In order to obtain a contradiction, suppose that N t(U)
contains two adjacent vertices y and z for some 1 ≤ t ≤ s. By the definition of N t(U),
we find that U contains two vertices xi, xj with dist(y, xi) = t and dist(z, xj) = t.
Because the distance between xi and xj in the cycle G[U ] is at most b g2c, we find that
G[N t[U ]] contains a cycle of length at most 2t + 1 + b g2c ≤ 2d g−24 e − 1 + b g2c < g.
This is not possible. Hence, property 1 is valid.

The proof of property 2 is similar. Suppose that x ∈ N t(U) is adjacent to at least
two different vertices in N t−1(U). This implies that there are two paths between x and
U of length at most t. Therefore G has a cycle of length less than g − 1, which is not
possible. Hence, property 2 is valid as well.

We now distinguish two cases; first we consider the case g = 9 and then the case
g 6= 9.

Case 1. g = 9.
Then k = 17, so G is P17-free, and s = 1. Let X ⊆ N1(U) be the set of vertices
adjacent to x9 and let Y ⊆ N2(U) be the set of vertices adjacent to the vertices of X .
Because G has no cycles of length less than 9, we can deduce two extra properties in
addition to properties 1 and 2:

3. Y is independent;
4. the vertices of Y are not adjacent to the vertices of N1(U) \X .
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Let H be the subgraph of G induced by the set V \ (N1[U ] ∪ Y ). We claim that H
is bipartite. In order to obtain a contradiction, suppose that H contains an odd induced
cycle Cr = v1v2 · · · vrv1. Because g = 9 and G is P17-free, we find that 9 ≤ r ≤ 17.
Let y1 · · · yt be a shortest path such that y1 ∈ U and yt ∈ {v1, . . . , vr}. Without loss of
generality assume that yt = v1. We observe that t ≥ 3. Because g = 9 and r ≤ 17, we
find that yt−1 is adjacent to at most one vertex of {v2, . . . , vr}.

Suppose that yt−1 is adjacent to zero vertices of {v2, . . . , vr}. If y1 = x1, then G
has an induced path x8x7 · · ·x2y1 · · · ytv2 · · · vr−1 on at least 17 vertices. This is not
possible, because G is P17-free. If y1 ∈ {x2, . . . , x9}, then we use the same arguments.

Suppose that yt−1 is adjacent to exactly one vertex of {v2, . . . , vr}. Because g =
9 and r is odd, we find that r = 15 or r = 17. This implies that the 7-vertex sets
{v2, . . . , v8} and {vr−6, vr−5, . . . , vr} are disjoint. Because g = 9, we find that yt−1 is
not adjacent to any vertex of {v2, . . . , v7, vr−5, vr−4, . . . , vr}. Because yt−1 is adjacent
to only one vertex of {v2, . . . , vr}, we find in addition that yt−1 cannot be adjacent to
both v8 and vr−6. By symmetry, we may assume that yt−1 is not adjacent to v8. If
y1 = x1, then x8x7 · · ·x2y1 · · · ytv2 · · · v8 is an induced path in G with at least 17
vertices. This is not possible, because G is P17-free. If y1 ∈ {x2, . . . , x9}, then we use
the same arguments. We conclude that H is bipartite.

Using properties 1-4 and the fact that H is bipartite, we can color G as follows. We
color vertices x1, x3, x5, x7 with color 1, vertices x2, x4, x6, x8 with color 2, vertex x9
and the vertices of the (independent) set N1(U) \X with color 3, all vertices in X and
Y with color 1 and 3, respectively, and finally, all vertices of the (bipartite) graph H
with colors 1 and 2.

Case 2. g 6= 9.
LetH be the subgraph ofG induced by the set V \Ns[U ]. We claim thatH is bipartite.
In order to obtain a contradiction, suppose that H contains an odd induced cycle Cr =
v1v2 · · · vrv1. Because G is Pk-free for k = 2g + d g−24 e − 3, we find that g ≤ r ≤
2g + d g−24 e − 2.

Let y1 · · · yt be a shortest path such that y1 ∈ U and yt ∈ {v1, . . . , vr}. We may
assume without loss of generality that y1 = x1 and yt = v1. Recall that s = d g−24 e − 1
and observe that t ≥ s + 2. If yt−1 is adjacent to at least two vertices of {v2, . . . , vr},
then r ≥ 3g − 6. However, we also have 3g − 6 > 2g + d g−24 e − 2 ≥ r as g ≥ 8.
Hence, this is not possible, and consequently, yt−1 is adjacent to at most one vertex of
{v2, . . . , vr}.

First suppose that yt−1 is adjacent to zero vertices of {v2, . . . , vr}. Then G has an
induced path xg−1xg−2 · · ·x2y1 · · · ytv2 · · · vr−1 on g + r + t − 4 vertices. However,
g + r + t − 4 ≥ 2g + s − 2 = 2g + d g−24 e − 3 = k, which is not possible as G is
Pk-free.

Now suppose that yt−1 is adjacent to exactly one vertex of {v2, . . . , vr}. By defini-
tion of g, yt−1 is not adjacent to any vertex of {v2, . . . , vg−2}∪{vr, vr−1, . . . , vr−g+4}.
Note that vg−1 6= vr−g+3, as otherwise r = 2g − 4 would be even. Because yt−1 is
adjacent to only one vertex of {v2, . . . , vr}, we find that yt−1 cannot be adjacent to
both vg−1 and vr−g+3. We assume without loss of generality that yt−1 is not adjacent
to vg−1. Then we find that G has an induced path xg−1xg−2 · · ·x2y1 · · · ytv2 · · · vg−1
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on 2g + t− 4 vertices, which is not possible as 2g + t− 4 ≥ 2g + s− 2 = k and G is
Pk-free. We conclude that H is bipartite.

Using properties 1 and 2 and the fact that H is bipartite, we color G as follows.
First suppose that g is even. For 1 ≤ i ≤ g/2, we color x2i−1 with color 1 and x2i with
color 2. Then we color the vertices of the (independent) sets N1(U), . . . , Ns(U) with
colors 1 and 3, where we alternate the colors starting with color 3. Finally we color the
vertices of the (bipartite) graphH with colors 1 and 2 ifNs(U) was colored 3, and with
colors 2 and 3 otherwise.

Now suppose that g is odd. Then g ≥ 11. Let X ⊆ N1(U) be the set of ver-
tices adjacent to xg . By property 2, the vertices of X are not adjacent to any vertex of
{x1, . . . , xg−1}. Because g ≥ 11, we have s ≥ 2. For 1 ≤ i ≤ bg/2c, we color x2i−1
with color 1 and x2i with color 2. Then we color xg and the vertices of the (indepen-
dent) setN1(U)\X with color 3, and the vertices ofX with color 1. Then we color the
vertices of the (independent) sets N2(U), . . . , Ns(U) with colors 2 and 3, where we
alternate the colors starting with color 2. Finally, we color the vertices of the (bipartite)
graphH with colors 1 and 3 ifNs(U) was colored 2, and with colors 1 and 2 otherwise.
This completes the proof of Theorem 4. ut

3 The Computational Complexity Results

In this section we prove the results of Table 2. We show the polynomial-time results
(row 2 of Table 2) in Section 3.1 and the NP-completeness results (rows 1 and 3 of
Table 2) in Section 3.2.

3.1 The Polynomial-Time Results

We first prove the following theorem.

Theorem 5. For all integers k, `, r, s ≥ 1, the k-COLORING problem can be solved in
linear time on (Kr,s, P`)-free graphs.

Proof. For positive integers p and q, the Ramsey number a(p, q) is the smallest number
of vertices n such that all graphs on n vertices contain an independent set of size p
or a clique of size q. Ramsey’s Theorem [30] states that such a number exists for all
positive integers p and q. Atminas, Lozin and Razgon [1] showed that for any two
integers ` and t, there exists an integer b(`, t) such that any graph of treewidth at least
b(`, t) contains the path P` as an induced subgraph or the complete bipartite graph
Kt,t as a (not necessarily induced) subgraph. We will combine these two results in
the following way. Let k, `, r, s ≥ 1, and let G be a (Kr,s, P`)-free graph. Let a∗ =
a(max{k + 1, r, s},max{k + 1, r, s}). Using Bodlaender’s algorithm [2] we can test
in linear time whether the treewidth of G is at most b(`, a∗)− 1.

First suppose that the treewidth of G is at most b(`, a∗)− 1, which is a constant. In
that case we can test in linear time whether G is k-colorable, because the k-COLORING
problem can be expressed in monadic second-order logic, and hence the well-known
result of Courcelle [9] for such problems may be applied.
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Now suppose that the treewidth of G is at least b(`, a∗). We claim that in this case
G is not k-colorable. This can be seen as follows. Due to the aforementioned result of
Atminas, Lozin and Razgon [1] and our assumption that G is P`-free, we find that G
contains the complete bipartite graphKa∗,a∗ as a subgraph. Let S and T be the partition
classes of this complete bipartite graph. By Ramsey’s Theorem, we find that both S
and T either contain an independent set of size max{k + 1, r, s} or a clique of size
max{k + 1, r, s}. If both of them contain an independent set of size max{k + 1, r, s},
then G[S ∪ T ], and consequently, G contains an induced Kr,s, which is not possible.
Hence, at least one of them, say S, contains a clique of size max{k + 1, r, s}. Then
G[S] is not k-colorable. Consequently, G is not k-colorable. ut

By choosing r = s = 2, we find that for all k ≥ 1, the k-COLORING problem
can be solved in linear time on (C4, P`)-free graphs due to Theorem 5. This proves the
second row in Table 2.

Remark. We can extend Theorem 5 in the following way. A list assignment of a graph
G = (V,E) is a function L that assigns a list L(u) of so-called admissible colors to
each u ∈ V . If L(u) ⊆ {1, . . . , k} for each u ∈ V , then we also say that L a k-list
assignment. We say that a coloring c : V → {1, 2, . . .} respects L if c(u) ∈ L(u) for
all u ∈ V . For a fixed integer k, the LIST k-COLORING problem has as input a graph
G with a k-list assignment L and asks whether G has a coloring that respects L. Jansen
and Scheffler [20] showed that LIST k-COLORING can be solved in time O(nkt+1)
on an n-vertex graph G with treewidth at most t that has a k-list assignment L. In the
proof of Theorem 5 we can replace the result of Courcelle [9] by this result in order to
find that for all integers k, `, r, s ≥ 1, the LIST k-COLORING problem can be solved in
linear time on (Kr,s, P`)-free graphs.

3.2 The NP-Completeness Results

We first show that 4-COLORING is NP-complete for (C3, P164)-free graphs. As the
problem is clearly in NP, we are left to prove NP-hardness. The gadgets used in the
papers of Kamiński and Lozin [21] and Maffray and Preissmann [28] to prove NP-
hardness of k-COLORING for graphs of girth g for any g ≥ 3 may contain arbitrarily
long induced paths. Similarly, the existing NP-hardness reductions for k-COLORING
for P`-free graphs are based on the presence of triangles in the gadgets. Hence, the
main task is to design a triangle-free gadget that can replace a number of edges of a
graph G with no long induced paths in order to make G triangle-free while still bound-
ing the maximum length of any induced path in G. We first present this gadget and
its properties. We then show how to incorporate it in our final gadget that proves our
NP-hardness reduction, which is from the NP-complete problem NOT-ALL-EQUAL-
3-SATISFIABILITY (cf. [13]).

The edge-replacing gadget We define four independent sets A, B, C and D with
|A| = |B| = 10 and |C| = |D| = 5. We add an edge between every vertex in A and
every vertex in B. We also add an edge between every vertex in C and every vertex
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Fig. 1. The graph F ; only one Q-cycle, R-cycle, S-cycle and one T -cycle are displayed.
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in D. This leads to two vertex-disjoint complete bipartite graphs with partition classes
A,B and C,D, respectively.

For every subset Ai ⊆ A of five vertices, we create two cycles Qi and Ti, each on
five new vertices. We say that Qi is a Q-cycle and that Ti is a T -cycle. We add five
edges between the vertices ofQi andAi. We chose these edges arbitrarily subject to the
condition that they form a matching. Similarly, we add five arbitrary matching edges
between the vertices of Ti and Ai. We also add five arbitrary matching edges between
the vertices of Qi and D, and do the same for Ti and C. We let Q and T denote the
set of all

(
10
5

)
Q-cycles and

(
10
5

)
T -cycles, respectively. Similarly, we define two setsR

and S of
(
10
5

)
R-cycles and

(
10
5

)
S-cycles, respectively. Here, each R-cycle and each

S-cycle correspond to exactly one subset Bi ⊆ B of five vertices. For each such Bi

we add five arbitrary matchings between its vertices and the vertices in its R-cycle and
S-cycle, respectively. We also add five arbitrary matching edges between the vertices of
each R-cycle and C, and between the vertices of each S-cycle and D. Finally, we add
a new vertex u adjacent to every vertex of A ∪D, and a new vertex v adjacent to every
vertex of B ∪ C. The resulting graph, called F , is C3-free; see Figure 1.

Lemma 1 states some useful properties of F that we will use later on.

Lemma 1. The graph F is 4-colorable. Moreover, u and v are colored with different
colors in every 4-coloring of F .

Proof. We first show that F is 4-colorable. We choose a vertex c ∈ C and a vertex
d ∈ D, which we give colors 1 and 2, respectively. We give each vertex of (A∪D)\{d}
color 3 and each vertex of (B ∪ C) \ {c} color 4. We give u color 1 and v color 3.
Consider a Q-cycle. We give its vertex adjacent to d color 1 and color its other four
vertices with colors 2 and 4. Consider a T -cycle. We give its vertex adjacent to c color
4 and color its other four vertices with colors 1 and 2. By symmetry, we can also give
the vertices of every R-cycle and S-cycle an appropriate color such that in the end we
have obtained a 4-coloring of F .

We now prove that u and v are not colored alike in every 4-coloring of F . Let φ be
a 4-coloring of F . First suppose that |φ(C)| ≥ 2 and |φ(D)| ≥ 2. Because C and D are
partition classes of a complete bipartite graph, we then may without loss of generality
assume that φ(C) = {2, 3} and φ(D) = {1, 4}. This means that u can only get a color
from {2, 3} and v can only get a color from {1, 4}. Hence, u and v are not colored alike.

In the remaining case, we assume without loss of generality that |φ(D)| = 1. If
|φ(A)| = 4, then we cannot color a vertex inB. Hence, |φ(A)| ≤ 3. If |φ(A)| = 3, then
every vertex of B ∪ {u} receives the same color. Because v is adjacent to the vertices
of B, this means that v must receive a different color.

Suppose that |φ(A)| ≤ 2. Then A contains a subset Ai of five vertices that are
colored alike, say with color 3. We observe that u does not get color 3. Consider the
Q-cycle corresponding to Ai. Its five vertices can neither be colored with color 3 nor
with the color in φ(D). Because this cycle needs at least three colors, this means that
φ(D) = φ(Ai) = {3}. Because every vertex of A is adjacent to every vertex of B,
color 3 is not used on B, so |φ(B)| ≤ 3.

First suppose that |φ(B)| ≤ 2. Then B contains a subset Bj of five vertices that are
colored alike, say with color 4. We consider the S-cycle corresponding to Bj . Because
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every vertex of this cycle is not only adjacent to a vertex of Bj with color 4 but also
adjacent to a vertex of D with color 3, we find that only colors 1 and 2 are available to
color its five vertices. This is not possible. Hence, |φ(B)| = 3, so φ(B) = {1, 2, 4}.
This means that v must receive color 3, whereas we already deduced that u does not get
color 3. This completes the proof of Lemma 1. ut

Using the edge-replacing gadget We now present our reduction for showing that
4-COLORING is NP-complete for the class of (C3, P164)-free graphs. This reduction
is from the NOT-ALL-EQUAL 3-SATISFIABILITY problem with positive literals only.
This problem is NP-complete [33] and is defined as follows. We are given a set X =
{x1, x2, . . . , xn} of logical variables, and a set C = {C1, C2, . . . , Cm} of three-literal
clauses over X in which all literals are positive. The question is whether there exists
a truth assignment for X such that each clause contains at least one true literal and at
least one false literal.

We consider an arbitrary instance I of NOT-ALL-EQUAL 3-SATISFIABILITY with
positive literals only that has variables {x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm}.
We assume that no variable appears twice in a clause.3 From I we first construct the
P7-free graph G from our previous paper [7]. We then explain how to incorporate our
edge-replacing gadget F . This will yield a graph G′. In Lemma 2 we will show that G′

is C3-free, and in Lemma 3 it is stated that G′ is P164-free. In Lemma 4 we will show
that G′ is 4-colorable if and only if I has a satisfying truth assignment in which each
clause contains at least one true literal and at least one false literal.

Here is the construction that defines the graph G.

• For each clause Cj we introduce a gadget with vertex set

{aj,1, aj,2, aj,3, bj,1, bj,2, cj,1, cj,2, cj,3, dj,1, dj,2}

and edge set

{aj,1cj,1, aj,2cj,2, aj,3cj,3, bj,1cj,1, cj,1dj,1, dj,1cj,2, cj,2dj,2, dj,2cj,3, cj,3bj,2, bj,2bj,1},

and a disjoint gadget called the copy that has vertex set

{a′j,1, a′j,2, a′j,3, b′j,1, b′j,2, c′j,1, c′j,2, c′j,3, d′j,1, d′j,2}

and edge set

{a′j,1c′j,1, a′j,2c′j,2, a′j,3c′j,3, b′j,1c′j,1, c′j,1d′j,1, d′j,1c′j,2, c′j,2d′j,2, d′j,2c′j,3, c′j,3b′j,2, b′j,2b′j,1}.

We say that all these vertices (so, including the vertices in the copy) are of a-type,
b-type, c-type and d-type, respectively. We call the gadget and its copy clause gad-
gets.

3 If there is a clause C = {x, x, x}, then (X, C) is a no-instance. If there exists a clause C =
{x, x, y} with x 6= y, then we get an equivalent instance of size at most four times as large by
replacing C by clauses {x, y, a}, {x, y, b}, {x, y, c}, {a, b, c}, where a, b, c are new variables.
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• Every variable xi is represented by a vertex in G, and we say that these vertices are
of x-type.

• For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 and add
edges cj,hxih and c′j,hxih for h = 1, 2, 3.

• We add an edge between every x-type vertex and every b-type vertex. We also add
an edge between every x-type vertex and every d-type vertex.

• We add an edge between every a-type vertex and every b-type vertex. We also add
an edge between every a-type vertex and every d-type vertex.

In Figure 2 we illustrate an example in which Cj is a clause with ordered variables
xi1 , xi2 , xi3 . The thick edges indicate the connection between the variables vertices
and the c-type vertices of the two copies of the clause gadget. The dashed thick edges
indicate the connections between the a-type and c-type vertices of the two copies of the
clause gadget. We omitted the indices from the labels of the clause gadget vertices to
increase the visibility.

a a′a a′a a′
Cj C ′

j

b c

d

c

d

c b b′
c′

d′

c′
d′

c′ b′

x1 xi1 xi2 xi3 xn

Fig. 2. The graph G for the clause Cj = {xi1 , xi2 , xi3}.

Before we show how to obtain the graph G′, we introduce the following terminol-
ogy. Let H be some graph. An F -identification of an edge st ∈ EH is the following
operation. We remove the edge st from H but keep the vertices s and t. We take a copy
of F and remove u and v from it. We then add an edge between s and NF (u) and an
edge between t and NF (v). The resulting graph is a copy of F that is a subgraph of G′.
The vertices in this copy not equal to s, t are called inner vertices of G′. Note that by
symmetry we could reverse the role of u and v in this operation.
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In order to obtain G′ from G we first apply consecutive F -identifications on all
edges between a-type and c-type vertices, on all edges between c-type and x-type ver-
tices and on all edges between two b-type vertices. We take a complete graph on four
new vertices r1, . . . , r4 called r-type vertices, and apply consecutive F -identifications
on each edge between them. This leads to a graph K. We connect K to the modified
graph G by adding an edge between every ai,j and every vertex in {r2, r3, r4} and an
edge between every a′i,j and every vertex in {r1, r3, r4}. This completes the construc-
tion of G′.

We need the following lemma.

Lemma 2. The graph G is C3-free.

Proof. In order to prove the lemma we must check ifG′ has an edge, the end vertices of
which share a common neighbor. Recall that F is C3-free and that u and v do not form
an edge. Hence, we only have to consider edges in G′ that are also in G. Such edges
connect the following vertices: a-type with b-type, a-type with d-type, b-type with c-
type, c-type with d-type, b-type with x-type, and d-type with x-type. By construction,
the end vertices of all these edges have no common neighbor. We conclude that G′ is
C3-free. ut

We also need the following lemma.

Lemma 3. The graph G′ is P164-free.

The proof of Lemma 3 is straightforward to check but involves a lengthy case anal-
ysis, and therefore has been omitted from our paper. Moreover, it may be the case that
the bound of 164 as stated in Lemma 3 can be slightly improved by a more careful
analysis of the graph G′. However, we recall that our aim was to prove the existence
of a constant `, such that 4-COLORING is NP-complete for (C3, P`)-free graphs rather
than minimizing `. It can be easily shown that G′ is P`-free for some constant ` as we
show below.

First we note that F is P186-free, because the subgraph of F induced by VF \ (A ∪
B ∪C ∪D) consists of connected components, each of which has at most five vertices,
and consequently, every induced path in F contains (at most five) vertices of at most
|A| + |B| + |C| + |D| + 1 = 31 such components besides at most 30 vertices of
A ∪ B ∪ C ∪ D. Because any induced path of G′ that contains no vertices of G is
contained in a copy of F , it has at most 185 vertices.

Let P be an arbitrary induced path of G′ that contains at least one vertex of G. Let
γa, γb, γc, γd, γr and γx denote the number of a-type, b-type, c-type, d-type, r-type and
x-type vertices of P , respectively. Observe that γr ≤ 4, because there are exactly four
r-type vertices. LetFP consist of those copies of F inG′ that contain at least one vertex
of P as an inner vertex. Every vertex of G′ that is not of d-type belongs to at least one
copy of F , whereas only vertices of c-type and x-type belong to more than one copy
of F . Because P is a path and every copy of F contains exactly two vertices of G, no
vertex of P can be in more than four different copies in FP ; note that a vertex s is only
contained in four copies if P starts at an inner vertex in a copy of F that contains s,
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passes through s via two other copies and ends in an inner vertex of yet another copy
of F that contains s. Because F is P186-free, we then find that

|VP | ≤ 4(γa + γb + γc + γx + 4) · 185 + γd.

We make a case distinction based on the observation that the subgraph of G′ in-
duced by all a-type, b-type, d-type and x-type vertices has a spanning subgraph that is
complete bipartite with partition classes Z1 and Z2, where Z1 is formed by all a-type
and x-type vertices, and Z2 by all b-type and d-type vertices.

First suppose that P contains no vertex of Z2. Let P ′ be a subpath of P that contains
no r-type vertex. In order to connect any two vertices of Z1 of P ′ via a subpath of P ′,
a c-type vertex is needed. In G, a c-type vertex is adjacent to one x-type vertex and to
one a-type vertex. Hence, by construction of G′, we find that P ′ contains at most three
vertices of Z1 and at most two c-type vertices (if P ′ has exactly three vertices of Z1,
then two of them are of a-type, whereas the other one is of x-type and lies between the
two a-type vertices on P ′, with two c-type vertices for the connectivity). In order to
connect subpaths of P that do not contain r-type vertices, we must use r-type vertices.
Because there are four r-type vertices, P contains at most 3 · 5 = 15 vertices of Z1 and
at most 2 · 5 = 10 vertices of c-type. Hence, γa + γx ≤ 15, γc ≤ 10. As γb = γd = 0,
we find that P has at most 4 · (15 + 10 + 4) · 185 = 21460 vertices.

Now suppose that P contains at least one vertex of Z2 but no vertices of Z1. Then
P does not contain any vertices of K either. Consequently, by construction of G′, P
contains at most two b-type vertices, at most three c-type vertices and at most two d-
type vertices (all of which belong to the same clause gadget in G). Hence γa = γx = 0,
γb ≤ 2, γc ≤ 3 and γd ≤ 2 implying that P has at most 4 · (2+3+4) ·185+2 = 6662
vertices.

Finally suppose that P contains at least one vertex of Z1 and at least one vertex of
Z2. Because Z1 and Z2 are the partition classes of a complete bipartite subgraph of G′,
we find that |Z1 ∪ Z2| ≤ 3, and moreover, that the vertices of Z1 ∪ Z2 are consecutive
in P . Any subpath of P containing no vertices of Z2 has at most 21460 vertices. Any
subpath of P containing no vertices of Z1 has at most 6662 vertices. Hence, P has at
most 21460 + 3 + 21460 = 42923 vertices.

From the above we conclude that ` = 42923 suffices (although this constant can be
reduced considerably to the constant ` = 164 from Lemma 3 by a more careful analysis
that avoids all the double counting we have done here).

The following lemma is the last lemma we need in order to state our main result.

Lemma 4. The graph G′ is 4-colorable if and only if I has a satisfying truth assign-
ment in which each clause contains at least one true literal and at least one false literal.

Proof. We need the following claim from [7].

Claim 1. The graph G has a 4-coloring in which every aj,h has color 1 and every a′j,h
has color 2 if and only if I has a truth assignment in which each clause contains at least
one true and at least one false literal.

Suppose that G′ is 4-colorable. By Lemma 1, the vertices of the edges on which we
applied F -identifications do not have the same color. This means that G is 4-colorable.

18



It also means that the vertices r1, . . . , r4 are not colored alike. We may assume without
loss of generality that ri gets color i for i = 1, . . . , 4. Then, by construction, every aj,h
has color 1 and every a′j,h has color 2 in G′, and consequently in G. By Claim 1, I has
a truth assignment in which each clause contains at least one true and at least one false
literal.

Suppose that I has a truth assignment in which each clause contains at least one
true and at least one false literal. By Claim 1, G has a 4-coloring in which every aj,h
has color 1 and every a′j,h has color 2. By Lemma 1 we can extend the 4-coloring of G
to a 4-coloring of G′. ut

The main result of this section follows directly from Lemmas 2–4 after recalling that
4-COLORING is in NP and that NOT-ALL-EQUAL-3-SATISFIABILITY with positive
literals only is NP-complete and observing that the construction of G′ can be carried
out in polynomial time.

Theorem 6. The 4-COLORING problem is NP-complete even for (C3, P164)-free graphs.

Fig. 3. Placing a generalized diamond on an edge uv of a graph.

Theorem 6 implies the first row of Table 2. We are left to prove the third row of this
table. In order to do this we need the following terminology. We say that we place a
generalized diamond on an edge uv of some graph if we remove uv and add four new
mutually adjacent vertices s1, . . . , s4 and edges usi for i = 1, 2, 3 and the edge s4v;
see Figure 3. We say that the vertices s1, . . . , s4 are internal vertices of the generalized
diamond. Then the new graph is 4-colorable if and only if the original graph is 4-
colorable. We are now ready to prove the following result which implies the third row
of Table 2. In fact we show a slightly stronger result.

Theorem 7. For all r ≥ 5, there exists a constant `(r) such that 4-COLORING is NP-
complete for (C5, . . . , Cr, P`(r))-free graphs.

Proof. From an instance I of NOT-ALL-EQUAL 3-SATISFIABILITY with positive lit-
erals only we construct the P7-free graph G as before (see also Figure 2). We introduce
four new vertices r1, . . . , r4 that are mutually adjacent, and we connect them to G by
adding an edge between every ah,i and every vertex in {r2, r3, r4} and an edge be-
tween every a′h,i and every vertex in {r1, r3, r4}. We denote the resulting graph by G∗

and prove the following claim.

Claim 1. If C is an induced cycle in G∗ with more than four vertices then
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(i) C = r1r2ah,isa
′
h′,i′r1 for some h, i, h′, i′, with s of b-type or d-type;

(ii) C = r1r2ah,ich,ixjc
′
h′,i′a

′
h′,i′r1 for some h, i, j, h′, i′;

(iii) C = ristxjt
∗s∗ri for some i, j, with s, s∗ of a-type and t, t∗ of c-type;

(iv) C = bj,1cj,1dj,1cj,2dj,2cj,3bj,2bj,1 for some j;
(v) C = b′j,1c

′
j,1d
′
j,1c
′
j,2d
′
j,2c
′
j,3b
′
j,2b
′
j,1 for some j.

We prove Claim 1 as follows. We say that an induced cycle of G∗ is of type (i), . . . , (v)
if it is described in statements (i), . . . , (v), respectively. LetC be an induced cycle ofG∗

that has more than four vertices. We observe thatC can have at most two r-type vertices.
We also recall that the subgraph of G, and consequently of G∗, induced by all a-type,
b-type, d-type and x-type vertices has a spanning subgraph that is complete bipartite
with partition classes Z1 and Z2, where Z1 is formed by all a-type and x-type vertices,
and Z2 by all b-type and d-type vertices. We will use these two observations in our case
analysis below.

Case 1. C contains no r-type vertices and no vertex of Z1. Then C is a subgraph of a
clause gadget. The only cycles in clause gadgets are of type (iv) and (v).

Case 2. C contains no r-type vertices and exactly one vertex s ∈ Z1. Let t be one of the
two neighbors of s on C. Let z be the other neighbor of t on C. If t is of c-type then z is
of b-type or d-type. However, this is not possible as vertices of such types are adjacent
to all vertices in Z1, which would mean that C is the 3-vertex cycle stzs. Hence, t is
of b-type or d-type. This means that z is of c-type or of b-type (note that the latter case
can only occur if t is of b-type). However, because every vertex in Z1 is adjacent to all
vertices of b-type, z cannot be of b-type. Hence z is of c-type. This means that the other
neighbor of z on C must be of b-type or d-type. Such a vertex is adjacent to s. Hence,
C has only four vertices; a contradiction.

Case 3. C contains no r-type vertices and at least two vertices of Z1. Let s, s∗ be two
vertices of Z1 that are on C. Note that s, s∗ are not adjacent. Because every vertex of
Z1 is adjacent to every vertex of Z2, we find that C contains at most one vertex of
Z2. First suppose that C contains no vertex of Z2. Then all vertices of C not in Z1 are
of c-type. We make the following three observations. First, Z1 and the set of all c-type
vertices are independent sets. Second, every a-type vertex has a unique c-type neighbor.
Third, every c-type vertex has a unique a-type neighbor and a unique x-type neighbor.
Consequently, C is not a cycle as C contains no subpath from s to s∗; a contradiction.
Now suppose that C contains a vertex t ∈ Z2. By the same arguments as before, we
find that C contains only one subpath from s to s∗ (namely the path sts∗). Hence C is
not a cycle; a contradiction.

Case 4. C contains one r-type vertex. Let ri be this r-type vertex. Let s, s∗ be the two
neighbors of ri on C. Then s, s∗ are of a-type. Let t, t∗ be the other neighbors of s, s∗

on C, respectively. Because C contains at least five vertices, t and t∗ are two different
vertices. Because vertices of b-type and d-type are common neighbors of s and s∗, this
means that both t and t∗ are neither of b-type nor of d-type. This means that both t and t∗

are of c-type. Consequently, no vertex of C can be of b-type or d-type (as such a vertex
would be adjacent to s and s′, both of which cannot have more than two neighbors
on C). Hence, because vertices of c-type have a unique neighbor of a-type, the other
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neighbor of t on C must be of x-type. Let xj be this neighbor. The subpath P of C that
starts at xj , ends in t∗ and that does not contain ri can only contain vertices of a-type,
x-type and c-type. Recall that every a-type vertex has a unique neighbor of c-type, and
that every c-type vertex has a unique neighbor of a-type and a unique neighbor of x-
type. Moreover, the union of vertices of a-type and x-type is an independent set. Hence,
P must be the path xjt∗. We conclude that C is of type (iii).

Case 5.C contains two r-type vertices. Then these vertices are neighbors onC. Because
C contains at least five vertices, they both have their other neighbor on C of a-type.
Hence, these r-type vertices must be r1 and r2, and their other neighbors on C are
some a′h′,i′ and ah,i, respectively. If ah,i and a′h′,i′ have a common neighbor on C, then
this neighbor must be of b-type or d-type. In that case C is of type (i). Suppose that
a′h′,i′ and ah,i have no common neighbor on C. Let s be the other neighbor of ah,i on
C, and let s′ be the other neighbor of a′h′,i′ on C. Then s and s′ must be of C-type, and
we use the same arguments as in Case 4, and find that C is of type (ii). This completes
the proof of Claim 1.

We first consider the case r = 5. We place a generalized diamond on all edges rha′i,j
and on all edges rhai,j . We denote the resulting graph by G∗5. We claim that G∗5 is C5-
free. This can be seen as follows. For contradiction, suppose that C is a cycle in G∗5
with exactly five vertices. If C contains no vertex of r-type, then C is a 5-vertex cycle
in G′. However, all 5-vertex cycles in G′ are of type (i) due to Claim 1. Hence, C
must contain at least one vertex of r-type. If C contains no a-type vertex, then C only
consists of vertices of r-type and internal vertices of generalized diamonds. However,
then C is not a 5-vertex cycle. Hence, C must also contain an a-type vertex. However,
every induced path between an a-type vertex and an r-type vertex has at least four
vertices. Hence, this case is not possible either, and we conclude that G∗5 is C5-free.

We find that G∗5 is 4-colorable if and only if G∗ is 4-colorable if and only if G has a
4-coloring in which every aj,h has color 1 and every a′j,h has color 2 if and only if I has
a truth assignment in which each clause contains at least one true and at least one false
literal. The last two equivalences follow from the same arguments as used in Lemma 4.

Finally, we prove that G∗5 is P23-free. Let P be an induced path of G∗5. Then P
contains at most two r-type vertices. Suppose P contains exactly two r-type vertices.
Then these vertices are adjacent on P . We then find that P has maximum number of
vertices if P can be decomposed into two parts in the following way. The first part of P
starts with two inner vertices of a generalized diamond, followed by the vertices of an
induced path in G∗, followed by two more inner vertices of a generalized diamond,
followed by an r-type vertex. The second part of P contains the same types of vertices
in reverse order. Hence, asG∗ is P7-free, we find that P has at most 2(2+6+2+1) = 22
vertices. If P contains at most one r-type vertex, then P contains less than 22 vertices.
We conclude that G∗5 is P23-free. Hence, we define `(5) = 23 and have proven the case
r = 5.

For r ≥ 6 we place a sufficient number of generalized diamonds on all edges r1a′ij
and on all edges r2aij . If r = 6, we have modified G∗ into a (C5, C6)-free graph G6

due to Claim 1. If r ≥ 7, then we must get rid of all induced cycles on seven vertices as
well. By Claim 1, these cycles are of type (ii), (iv) and (v). Hence, in order to modify
G∗ into a (C5, . . . , Cr)-free graph G∗r , it suffices to do the following in addition to the
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generalized diamond placements that we placed already. We replace each edge bj,1bj,2
and each edge b′j,1b

′
j,2 by sufficiently long paths of odd length, whose inner vertices we

connect to all a-type vertices and to all x-type vertices. These paths, which start at and
end in a b-type vertex, are called b-paths.

We claim that G∗r is P`(r)-free for some constant `(r). This can be seen as follows.
Let P be an induced path in G∗r . We show that the number of vertices of every type
(a-type, b-type, c-type, d-type, r-type, x-type, inner vertex of generalized diamond, and
inner vertex of b-path) present in P is bounded by a constant.

First of all, P contains at most two r-type vertices, and if P contains two r-type
vertices then these vertices are adjacent. As before, this means that P contains inner
vertices of at most four generalized diamonds.

We claim that P has at most four a-type vertices. In order to see this, suppose that P
contains more than two a-type vertices. Then P contains no b-type vertices and no inner
vertices of b-paths either. Recall that a-type vertices have a unique c-type neighbor,
and that c-type vertices have a unique a-type neighbor and a unique x-type neighbor.
Moreover, the union of the set of a-type vertices and the set of x-type vertices is an
independent set. Hence, because P contains at most two r-type vertices, P has at most
four a-type vertices (note that P can only have four a-type vertices if P starts at and
ends in an a-type vertex and moreover contains exactly one r-type vertex).

By the same arguments as above, we find that P has at most two x-type vertices.
Furthermore, P has at most 4 + 2 = 6 c-type vertices, as the number of c-type vertices
is not larger than the total number of a-type vertices and x-type vertices.

We claim that P has at most two b-type vertices and inner vertices of at most two
b-paths. In order to see this, suppose that P has more than two b-type vertices or inner
vertices of more than two b-paths. Then P contains no a-type vertices and no x-type
vertices. This means that P only contains vertices from one clause gadget in G and
one b-path; a contradiction. Hence, we have shown that the number of vertices of every
type that is present in P is bounded by a constant. Consequently, the total number of
vertices in P is bounded by a constant; note that this constant depends on the length of
the b-paths, and thus on r.

Finally, we claim that G∗r is 4-colorable if and only if G∗ is 4-colorable. This can
be seen as follows. We may assume without loss of generality that vertices of a-type
are colored with colors 1 and 2 in any 4-coloring of G∗r and in any 4-coloring of G∗.
This means that all b-type vertices may be assumed to have color 3 or 4 in G∗. It also
implies that we may assume that the colors of the vertices of every b-path inG∗r alternate
between colors 3 and 4. Because b-paths have odd length, adjacent b-type vertices inG∗

have different colors in G∗r . We conclude that 4-colorings of G∗r and G∗ correspond to
each other. Hence, similar to the case r = 5, we have proven the case r ≥ 6. ut
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17. C.T. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu, Deciding k-colorability of P5-
free graphs in polynomial time, Algorithmica 57, 74–81 (2010).

18. I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10, 718–720 (1981).
19. S. Huang, Improved complexity results on k-coloring Pt-free graphs, Proc. MFCS 2013,

LNCS 8087, 551–558 (2013).
20. K Jansen and P. Scheffler, Generalized coloring for tree-like graphs, Discrete Appl. Math.

75, 135–155 (1997).
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