Skip to main content

On a Conjecture about Compatibility of Multi-states Characters

  • Conference paper
Algorithms in Bioinformatics (WABI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6833))

Included in the following conference series:

Abstract

Perfect phylogeny consisting of determining the compatibility of a set of characters is known to be NP-complete [4,28]. We propose in this article a conjecture on the necessary and sufficient conditions of compatibility: Given a set \(\mathcal{C}\) of r-states full characters, there exists a function f(r) such that \(\mathcal{C}\) is compatible iff every set of f(r) characters of \(\mathcal{C}\) is compatible. According to [7,9,8,25,11,23], f(2) = 2, f(3) = 3 and f(r) ≥ r. [23] conjectured that f(r) = r for any r ≥ 2. In this paper, we present an example showing that f(4) ≥ 5. Therefore it could be the case that for r ≥ 4 characters the problem behavior drastically changes. In a second part, we propose a closure operation for chordal sandwich graphs. The later problem is a common approach of perfect phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Comput. 23(6) (1994)

    Google Scholar 

  2. Agarwala, R., Fernández-Baca, D.: Simple algorithms for perfect phylogeny and triangulating colored graphs. Int. J. Found. Comput. Sci. 7(1), 11–22 (1996)

    Article  MATH  Google Scholar 

  3. Böcker, S., Dress, A.W.M., Steel, M.A.: Patching up x-trees. Annals of Combinatorics 3, 1–12 (1999)

    Article  MATH  Google Scholar 

  4. Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  5. Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)

    Article  MATH  Google Scholar 

  6. Dress, A., Steel, M.A.: Convex tree realizations of partitions. Applied Mathematics Letters 5(3), 3–6 (1992)

    Article  MATH  Google Scholar 

  7. Fitch, W.M.: Toward finding the tree of maximum parsimony. In: Estabrook, G.F. (ed.) The Eighth International Conference on Numerical Taxonomy, pp. 189–220. W. H. Freeman and Company, San Francisco (1975)

    Google Scholar 

  8. Fitch, W.M.: On the problem of discovering the most parsimonious tree. American Naturalist 11, 223–257 (1977)

    Article  Google Scholar 

  9. Johnson, C., Estabrook, G., McMorris, F.: A mathematical formulation for the analysis of cladistic character compatibility. Math Bioscience 29 (1976)

    Google Scholar 

  10. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithms 19(3), 449–473 (1995)

    Article  MATH  Google Scholar 

  11. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MATH  Google Scholar 

  12. Gusfield, D.: Optimal, efficient reconstruction of root-unknown phylogenetic networks with constrained and structured recombination. J. Comput. Syst. Sci. 70(3), 381–398 (2005)

    Article  MATH  Google Scholar 

  13. Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable data: Solutions via integer-programming and chordal graph theory. J. of Computational Biology 17(3), 383–399 (2010)

    Article  Google Scholar 

  14. Gusfield, D., Bansal, V., Bafna, V., Song, Y.S.: A decomposition theory for phylogenetic networks and incompatible characters. Journal of Computational Biology 14(10), 1247–1272 (2007)

    Article  Google Scholar 

  15. Gusfield, D., Eddhu, S., Langley, C.H.: The fine structure of galls in phylogenetic networks. INFORMS Journal on Computing 16(4), 459–469 (2004)

    Article  MATH  Google Scholar 

  16. Gusfield, D., Eddhu, S., Langley, C.H.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinformatics and Computational Biology 2(1), 173–214 (2004)

    Article  MATH  Google Scholar 

  17. Gusfield, D., Frid, Y., Brown, D.: Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 51–64. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Habib, M., Stacho, J.: Unique perfect phylogeny is np-hard. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 132–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences 98(2), 185–200 (1990)

    Article  MATH  Google Scholar 

  20. Huber, K.T., Moulton, V., Steel, M.: Four characters suffice to convexly define a phylogenetic tree. SIAM Journal on Discrete Mathematics 18, 835–843 (2005)

    Article  MATH  Google Scholar 

  21. Kannan, S., Warnow, T.: Inferring evolutionary history from dna sequences. SIAM J. Comput. 23(4) (1994)

    Google Scholar 

  22. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed. In: SODA, pp. 595–603 (1995)

    Google Scholar 

  23. Lam, F., Gusfield, D., Sridhar, S.: Generalizing the four gamete condition and splits equivalence theorem: Perfect phylogeny on three state characters. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 206–219. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. McMorris, F.R., Warnow, T., Wimer, T.: Triangulating vertex colored graphs. In: SODA, pp. 120–127 (1993)

    Google Scholar 

  25. Meacham, C.A.: Theoretical and computational considerations of the compatibility of qualitative taxonomic characters. In: Felsenstein, J. (ed.) Numerical Taxonomy. NATO ASI, vol. G1, pp. 304–314. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  26. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  27. Semple, C., Steel, M.: Tree reconstruction from multi-state characters. Advances in Applied Mathematics 28, 169–184 (2002)

    Article  MATH  Google Scholar 

  28. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9, 91–116 (1992)

    Article  MATH  Google Scholar 

  29. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8(1), 69–78 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habib, M., To, TH. (2011). On a Conjecture about Compatibility of Multi-states Characters. In: Przytycka, T.M., Sagot, MF. (eds) Algorithms in Bioinformatics. WABI 2011. Lecture Notes in Computer Science(), vol 6833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23038-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23038-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23037-0

  • Online ISBN: 978-3-642-23038-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics