Skip to main content

Prediction of Cerebral Aneurysm Rupture Using Hemodynamic, Morphologic and Clinical Features: A Data Mining Approach

  • Conference paper
Database and Expert Systems Applications (DEXA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6861))

Included in the following conference series:

Abstract

Cerebral aneurysms pose a major clinical threat and the current practice upon diagnosis is a complex, lengthy, and costly, multi-criteria analysis, which to date is not fully understood. This paper reports the development of several classifiers predicting whether a given clinical case is likely to rupture taking into account available information of the patient and characteristics of the aneurysm.

The dataset used included 157 cases, with 294 features each. The broad range of features include basic demographics and clinical information, morphological characteristics computed from the patient’s medical images, as well as results gained from personalised blood flow simulations.

In this premiere attempt the wealth of aneurysm-related information gained from multiple heterogeneous sources and complex simulation processes is used to systematically apply different data-mining algorithms and assess their predictive accuracy in this domain. The promising results show up to 95% classification accuracy. Moreover, the analysis also enables to confirm or reject risk factors commonly accepted or suspected in the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonie, M., Zaïane, O., Coman, A.: Application of data mining techniques for medical image classification. In: Proceedings of the Second International Workshop Multimedia Data Mining, with ACM SIGKDD, pp. 94–101 (2001)

    Google Scholar 

  2. Benkner, S., Arbona, A., Berti, G., Chiarini, A., Dunlop, R., Engelbrecht, G., Frangi, A.F., et al.: @neurIST: Infrastructure for advanced disease management through integration of heterogeneous data, computing, and complex processing services. IEEE Transactions on Information Technology in Boimedicine 14, 126–131 (2010)

    Google Scholar 

  3. Bennett, K.P., Campbell, C.: Support vector machines: Hype or hallelujah? SIGKDD Explorations Newsletter 2, 1–13 (2000)

    Article  Google Scholar 

  4. Berthold, M.R.: Mixed fuzzy rule formation. International Journal of Approximate Reasoning 32(2-3), 67–84 (2003)

    Article  MATH  Google Scholar 

  5. Berthold, M.R., Diamond, J.: Constructive training of probabilistic neural networks. Neurocomputing 19(1-3), 167–183 (1998)

    Article  Google Scholar 

  6. Cebral, J., Mut, F., Weir, J., Putman, C.: Association of hemodynamic characteristics and cerebral aneurysm rupture. American Journal of Neuroradiology 32, 264–270 (2011)

    Article  Google Scholar 

  7. Chien, A., Castro, M., Tateshima, S., Sayre, J., Cebral, J., Vinuela, F.: Quantitative hemodynamic analysis of brain aneurysms at different locations. American Journal of Neuroradiology 30, 1507–1512 (2009)

    Article  Google Scholar 

  8. Dunlop, R., Arbona, A., Rajasekaran, H., Lo Iacono, L., Fingberg, J., Summers, P., Benkner, S., Engelbrecht, G., Chiarini, A., Friedrich, C.M., Moore, B., Bijlenga, P., Iavindrasana, J., Hose, R.D., Frangi, A.F.: @neurIST - chronic disease management through integration of heterogeneous data and computer-interpretable guideline services. Stud. Health Technol. Inform. 138, 173–177 (2008)

    Google Scholar 

  9. Frangi, A.F., Hose, R., Ruefenacht, D.: The @neurIST project: Towards understanding cerebral aneurysms (2007)

    Google Scholar 

  10. Friedrich, C.M., Dach, H., Gattermayer, T., Engelbrecht, G., Benkner, S., Hofmann-Apitius, M.: @neurIST - chronic disease management through integration of heterogeneous data and computer-interpretable guideline services. Stud. Health Technol. Inform. 138, 165–172 (2008)

    Google Scholar 

  11. Iavindrasana, J., Depeursinge, A., Ruch, P., Spahni, S., Geissbuhler, A., Müller, H.: Design of a decentralized reusable research database architecture to support data acquisition in large research projects. Stud. Health Technol. Inform. 129, 325–329 (2007)

    Google Scholar 

  12. Johnston, S., Wilson, C.B., Halbach, V., Higashida, R., Dowd, C., McDermott, M., Applebury, C., Farley, T., Gress, D.: Endovascular and surgical treatment of unruptured cerebral aneurysms: comparison of risks. Annals of Neurology 48, 11–19 (2000)

    Article  Google Scholar 

  13. Kurkure, U., Chittajallu, D., Brunner, G., Le, Y., Kakadiaris, I.: A supervised classification-based method for coronary calcium detection in non-contrast CT. International Journal of Cardiovascular Imaging 26, 9817–9828 (2010)

    Article  Google Scholar 

  14. Lee, H.G., Nohand, K.Y., Ryu, K.H.: A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness. In: Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, pp. 200–206. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

  15. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley, Chichester (2002)

    MATH  Google Scholar 

  16. Parthasarathy, S., Aggarwal, C.: On the use of conceptual reconstruction for mining massively incomplete data sets. IEEE Transactions on Knowledge and Data Engineering 15(6), 1512–1521 (2003)

    Article  Google Scholar 

  17. Pozo, J.M., Villa-Uriol, M.C., Frangi, A.F.: Efficient 3D geometric and Zernike moments computation from unstructured surface meshes. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 471–484 (2011)

    Article  Google Scholar 

  18. Ribeiro, M., Balan, A., Felipe, J., Traina, A., Traina, C.: Mining Complex Data, Studies in Computational Intelligence. In: Mining Statistical Association Rules to Select the Most Relevant Medical Image Features, vol. 165, pp. 113–131. Springer, Heidelberg (2009)

    Google Scholar 

  19. Ribeiro, M., Traina, A.M., Traina, C., Rosa, N., Marques, P.: How to improve medical image diagnosis through association rules: The IDEA method. In: Proceedings of the 21st IEEE International Symposium on Computer-Based Medical Systems, pp. 266–271. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  20. Roos, Y.B., Dijkgraaf, M.G., Albrecht, K.W., Beenen, L.F., Groen, R.J., de Haan, R.J., Vermeulen, M.: Direct costs of modern treatment of aneurysmal subarachnoid hemorrhage in the first year after diagnosis. Stroke 33, 1595–1599 (2002)

    Article  Google Scholar 

  21. Tan, X., Han, H.P.Q., Ni, J.: Domain knowledge-driven association pattern mining algorithm on medical images. In: Proceedings of the 2009 Fourth International Conference on Internet Computing for Science and Engineering, pp. 30–35 (2009)

    Google Scholar 

  22. Tsai, C., Lee, C., Yang, W.: A discretization algorithm based on class-attribute contingency coefficient. Information Sciences 731, 714–731 (2008)

    Article  Google Scholar 

  23. Valencia, C., Villa-Uriol, M.C., Pozo, J.M., Frangi, A.F.: Morphological descriptors as rupture indicators in middle cerebral artery aneurysms. In: EMBC, Buenos Aires, Argentina, pp. 6046–6049 (September 2010)

    Google Scholar 

  24. Villa-Uriol, M.C., Berti, G., Hose, D.R., Marzo, A., Chiarini, A., Penrose, J., Pozo, J., Schmidt, J.G., Singh, P., Lycett, R., Larrabide, I., Frangi, A.F.: @neurIST complex information processing toolchain for the integrated management of cerebral aneurysms. Interface Focus (2011)

    Google Scholar 

  25. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  26. Xiang, J., Natarajan, S.K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L.N., Siddiqui, A.H., Levy, E.I., Meng, H.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011)

    Article  Google Scholar 

  27. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In: Proceedings SIAM International Conference on Data Mining, pp. 331–335 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bisbal, J., Engelbrecht, G., Villa-Uriol, MC., Frangi, A.F. (2011). Prediction of Cerebral Aneurysm Rupture Using Hemodynamic, Morphologic and Clinical Features: A Data Mining Approach. In: Hameurlain, A., Liddle, S.W., Schewe, KD., Zhou, X. (eds) Database and Expert Systems Applications. DEXA 2011. Lecture Notes in Computer Science, vol 6861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23091-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23091-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23090-5

  • Online ISBN: 978-3-642-23091-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics