Abstract
The complex wave representation (CWR) converts unsigned 2D distance transforms into their corresponding wave functions. The underlying motivation for performing this maneuver is as follows: the normalized power spectrum of the wave function is an excellent approximation (at small values of Planck’s constant—here a free parameter τ) to the density function of the distance transform gradients. Or in colloquial terms, spatial frequencies are gradient histogram bins. Since the distance transform gradients have only orientation information, the Fourier transform values mainly lie on the unit circle in the spatial frequency domain. We use the higher-order stationary phase approximation to prove this result and then provide empirical confirmation at low values of τ. The result indicates that the CWR of distance transforms is an intriguing and novel shape representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blake, A., Zisserman, A.: Visual Reconstruction. The MIT Press, Cambridge (1987)
Bohm, D.: A suggested interpretation of the quantum theory in terms of ”hidden variables”, I . Physical Review 85, 166–179 (1952)
Bracewell, R.N.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill Science and Engineering (1999)
Butterfield, J.: On Hamilton-Jacobi theory as a classical root of quantum theory. In: Elitzur, A., Dolev, S., Kolenda, N. (eds.) Quo-Vadis Quantum Mechanics. ch. 13, pp. 239–274. Springer, Heidelberg (2005)
Chaichian, M., Demichev, A.: Path Integrals in Physics: Stochastic Processes and Quantum Mechanics, vol. I. Institute of Physics Publishing (2001)
Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5(10), 1435–1447 (1996)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2010)
Geiger, D., Yuille, A.L.: A common framework for image segmentation. International Journal of Computer Vision 6(3), 227–243 (1991)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)
Jones, D.S., Kline, M.: Asymptotic expansions of multiple integrals and the method of stationary phase. Journal of Mathematical Physics 37, 1–28 (1958)
Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters/CRC Press, Boca Raton (1997)
Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)
Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)
Rangarajan, A., Gurumoorthy, K.S.: A schrödinger wave equation approach to the eikonal equation: Application to image analysis. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 140–153. Springer, Heidelberg (2009)
Siddiqi, K., Pizer, S. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Computational Imaging and Vision. Springer, Heidelberg (2008)
Siddiqi, K., Tannenbaum, A.R., Zucker, S.W.: A hamiltonian approach to the eikonal equation. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 1–13. Springer, Heidelberg (1999)
Tu, Z., Chen, X., Yuille, A.L., Zhu, S.C.: Image parsing: Unifying segmentation, detection, and recognition. International Journal of Computer Vision 63(2), 113–140 (2005)
Wong, R.: Asymptotic Approximations of Integrals. Academic Press, Inc., London (1989)
Wong, R., McClure, J.P.: On a method of asymptotic evaluation of multiple integrals. Mathematics of Computation 37(156), 509–521 (1981)
Yuille, A.L.: Generalized deformable models, statistical physics, and matching problems. Neural Computation 2(1), 1–24 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gurumoorthy, K.S., Rangarajan, A., Banerjee, A. (2011). The Complex Wave Representation of Distance Transforms. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2011. Lecture Notes in Computer Science, vol 6819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23094-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-23094-3_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23093-6
Online ISBN: 978-3-642-23094-3
eBook Packages: Computer ScienceComputer Science (R0)