Skip to main content

Global Relabeling for Continuous Optimization in Binary Image Segmentation

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2011)

Abstract

Recently, continuous optimization methods have become quite popular since they can deal with a variety of non-smooth convex problems. They are inherently parallel and therefore well suited for GPU implementations. Most of the continuous optimization approaches have in common that they are very fast in the beginning, but tend to get very slow as the solution gets close to the optimum. We therefore propose to apply global relabeling steps to speed up the convergence close to the optimum. The resulting primal-dual algorithm with global relabeling is applied to graph cut problems as well as to Total Variation (TV) based image segmentation. Numerical results show that the global relabeling steps significantly speed up convergence of the segmentation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society Series B 51, 271–279 (1989)

    Google Scholar 

  2. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE transactions on pattern analysis and machine intelligence 30, 1068–1080 (2008)

    Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 26–33 (2003)

    Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on pattern analysis and machine intelligence 26, 1124–1137 (2004)

    Google Scholar 

  5. Rother, C., Kolmogorov, V., Blake, A.: GrabCut - Interactive Foreground Extraction using Iterated Graph Cuts. ACM Transactions on Graphics, SIGGRAPH (2004)

    Google Scholar 

  6. Dixit, N., Keriven, R., Paragios, N.: GPU-Cuts: Combinatorial Optimisation, Graphic Processing Units and Adaptive Object Extraction. Technical Report March, Laboratoire Centre Enseignement Recherche Traitement Information Systemes (CERTIS), Ecole Nationale des Ponts et Chaussees, ENPC (2005)

    Google Scholar 

  7. Vineet, V., Narayanan, P.J.: CUDA cuts: Fast graph cuts on the GPU. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2008)

    Google Scholar 

  8. Bhusnurmath, A., Taylor, C.J.: Graph cuts via l1 norm minimization. IEEE transactions on pattern analysis and machine intelligence 30, 1866–1871 (2008)

    Google Scholar 

  9. Strang, G.: Maximal flow through a domain. Mathematical Programming 26, 123–143 (1983)

    Google Scholar 

  10. Strang, G.: Maximum flows and minimum cuts in the plane. Journal of Global Optimization 47, 527–535 (2009)

    Google Scholar 

  11. Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An experimental comparison of discrete and continuous shape optimization methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 332–345. Springer, Heidelberg (2008)

    Google Scholar 

  12. Sinop, A.K., Grady, L.: A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm. In: IEEE 11th International Conference on Computer Vision (2007)

    Google Scholar 

  13. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power Watershed: A Unifying Graph-Based Optimization Framework. IEEE Trans. on Pattern Analysis and Machine Intelligence (2011)

    Google Scholar 

  14. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 83, 1768–1783 (2006)

    Google Scholar 

  15. Olsson, C., Byrod, M., Overgaard, N.C., Kahl, F.: Extending continuous cuts: Anisotropic metrics and expansion moves. In: IEEE 12th International Conference on Computer Vision, pp. 405–412 (2009)

    Google Scholar 

  16. Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 106–118 (2006)

    Google Scholar 

  17. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models. SIAM Journal on Applied Mathematics 66, 16–32 (2006)

    Google Scholar 

  18. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 1, 61–79 (1997)

    Google Scholar 

  19. Leung, S., Osher, S.: Global Minimization of the Active Contour Model with TV-Inpainting and Two-phase Denoising. In: 3rd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 149–160 (2005)

    Google Scholar 

  20. Unger, M., Pock, T., Bischof, H.: Continuous Globally Optimal Image Segmentation with Local Constraints. In: Computer Vision Winter Workshop, Moravske Toplice, Slovenija (2008)

    Google Scholar 

  21. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast Global Minimization of the Active Contour/Snake Model. Journal of Mathematical Imaging and Vision 28, 151–167 (2007)

    Google Scholar 

  22. Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision, 1-26 (2010)

    Google Scholar 

  23. Chambolle, A.: Total Variation Minimization and a Class of Binary MRF Models. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, vol. 1, pp. 136–152 (2005)

    Google Scholar 

  24. NVidia: NVIDIA Performance Primitives ( NPP ) Version 3.2.16. Technical report (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unger, M., Pock, T., Bischof, H. (2011). Global Relabeling for Continuous Optimization in Binary Image Segmentation. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2011. Lecture Notes in Computer Science, vol 6819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23094-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23094-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23093-6

  • Online ISBN: 978-3-642-23094-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics