Skip to main content

Putting MAP Back on the Map

  • Conference paper
Pattern Recognition (DAGM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6835))

Included in the following conference series:

Abstract

Conditional Random Fields (CRFs) are popular models in computer vision for solving labeling problems such as image denoising. This paper tackles the rarely addressed but important problem of learning the full form of the potential functions of pairwise CRFs. We examine two popular learning techniques, maximum likelihood estimation and maximum margin training. The main focus of the paper is on models such as pairwise CRFs, that are simplistic (misspecified) and do not fit the data well. We empirically demonstrate that for misspecified models maximum-margin training with MAP prediction is superior to maximum likelihood estimation with any other prediction method. Additionally we examine the common belief that MLE is better at producing predictions matching image statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besag, J.: Statistical analysis of non-lattice data. The Statistician (1975)

    Google Scholar 

  2. Boykov, Y.: Fast approximate energy minimization via graph cuts. PAMI (2001)

    Google Scholar 

  3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE TIP 16(8), 2080–2095 (2007)

    MathSciNet  Google Scholar 

  4. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  5. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. PAMI 28(10) (2006)

    Google Scholar 

  7. Kumar, S., Hebert, M.: Discriminative Random Fields. IJCV 68(2), 179–201 (2006)

    Article  Google Scholar 

  8. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Associative hierarchical CRFs for object class image segmentation. In: ICCV 2009 (2009)

    Google Scholar 

  9. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Learning for Matrix Factorization and Sparse Coding. JMLR 11, 19–60 (2010)

    MathSciNet  Google Scholar 

  10. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images. In: ICCV 2001 (2001)

    Google Scholar 

  11. Nowozin, S., Gehler, P.V., Lampert, C.H.: On parameter learning in CRF-based approaches to object class image segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 98–111. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Robert, C.P.: The Bayesian Choice. From decision Theoretic Foundations to Computational Implementation. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Roth, S., Black, M.J.: Fields of Experts. IJCV (2008)

    Google Scholar 

  14. Rother, C., Kolomogorov, V., Blake, A.: GrabCut Interactive Foreground Extraction using Iterated Graph Cuts. TOG 23(3), 309–314 (2004)

    Article  Google Scholar 

  15. Ruderman, D.: The statistics of natural images. Comp. in Neural Systems (1994)

    Google Scholar 

  16. Samuel, K.G.G., Tappen, M.F.: Learning Optimized MAP Estimates in Continuously-Valued MRF Models. In: CVPR 2009 (2009)

    Google Scholar 

  17. Scharstein, D.: Learning Conditional Random Fields for Stereo. In: CVPR 2007 (2007)

    Google Scholar 

  18. Schmidt, U., Gao, Q., Roth, S.: A Generative Perspective on MRFs in Low-Level Vision. In: CVPR 2010 (2010)

    Google Scholar 

  19. Taskar, Guestrin, Koller: Max-Margin Markov Networks. In: NIPS 2003 (2003)

    Google Scholar 

  20. White, H.: Maximum-likelihood estimation of misspecified models. Econom. (1982)

    Google Scholar 

  21. Woodford, O.J., Rother, C., Kolmogorov, V.: A Global Perspective on MAP Inference for Low-Level Vision. In: ICCV 2009 (2009)

    Google Scholar 

  22. Zhu, S., Mumford, D.: Prior learning and Gibbs reaction-diffusion. In: PAMI 1997 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pletscher, P., Nowozin, S., Kohli, P., Rother, C. (2011). Putting MAP Back on the Map. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23123-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23122-3

  • Online ISBN: 978-3-642-23123-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics