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Abstract. Many fields of research in biology, motion science and robotics
depend on the understanding of animal locomotion. Therefore, numerous
experiments are performed using high-speed biplanar x-ray acquisition
systems which record sequences of walking animals. Until now, the evalu-
ation of these sequences is a very time-consuming task, as human experts
have to manually annotate anatomical landmarks in the images. There-
fore, an automation of this task at a minimum level of user interaction is
worthwhile. However, many difficulties in the data—such as x-ray occlu-
sions or anatomical ambiguities—drastically complicate this problem and
require the use of global models. Active Appearance Models (AAMs) are
known to be capable of dealing with occlusions, but have problems with
ambiguities. We therefore analyze the application of multi-view AAMs
in the scenario stated above and show that they can effectively han-
dle uncertainties which can not be dealt with using single-view models.
Furthermore, preliminary studies on the tracking performance of human
experts indicate that the errors of multi-view AAMs are in the same
order of magnitude as in the case of manual tracking.

1 Introduction and Related Work

Understanding animal locomotion is a crucial part of countless problems ranging
from the field of biology over motion science to robotics. To name but a few,
these problems include gaining a better understanding of evolution [11], the
development of mathematical models of locomotion such as the spring-mass
model [3], or building walking robots. To answer open questions in the field of
locomotion research, avian bipedal locomotion provides an appropriate testbed.
One reason for the suitability is that bird species exist in countless variations
of important locomotion parameters like body mass and limb proportions and
exhibit a large range of walking and running speeds.

To gain a profound and detailed insight into terrestrial bird locomotion,
many different specimen of various species need to be studied. Nowadays, these
studies are often entirely based on high-speed x-ray videography. As opposed to
external marker based methods, the key advantage is that all important parts



2 D. Haase, J. A. Nyakatura and J. Denzler

(a) Acquisition System (b) Example Sequence

Fig. 1. (a) Biplanar high-speed x-ray acquisition system (Neurostar®, Siemens AG).
(b) Example sequence of a quail (Coturniz coturniz) for the dorsoventral (top row)
and lateral (bottom row) camera view acquired with this system.

of the locomotor system can be observed directly [6,11]. A state-of-the-art x-
ray acquisition system is shown in Fig la. The system consists of two movable
x-ray image intensifiers (C-arms) which are positioned around a table and allow
for recordings at a high temporal and spatial resolution (1536 x 1024 pixels
at 1kHz). For the recording of animal locomotion sequences, a non-metallic
treadmill is placed on the central table. In Fig. 1b, the locomotion of a quail
(Coturniz coturniz) acquired using this system is exemplarily shown.

The evaluation of the locomotion sequences is mainly based on anatomical
points of interest (landmarks), as for instance the femur (thighbone), the hip
joints or the knee joints. Example landmarks used for a quail are shown in Fig. 3.
Until now, the landmarks have to be located manually by human experts. Due
to the high temporal resolution, however, this is a highly time-consuming task
which has prevented the realization of large-scale studies up to now.

Therefore, there is urgent need to automate the task of anatomical landmark
tracking for this application at a minimum of user interaction. At first sight, this
might seem to be an easy task, as key point tracking is a well-researched topic
in computer vision. Yet, there are several issues which tremendously complicate
the procedure. The main problems are the severe and continuously changing
occlusions in the x-ray images in consequence of the motion of the animal and
the imaging process. This effect causes local image areas around anatomical
landmarks to be extremely variable. Thus, local tracking techniques like optical-
flow tracking [14], KLT-tracking [1], region-based tracking [13] or SIFT-tracking
[16] are rendered impossible [12].

Model-based global approaches, on the other hand, explain each image as a
whole and hence are less prone to local disturbances. A prominent example in
this context is the registration of a given 3D computer tomography (CT) data set
to a 2D image [18,2,5]. In our scenario, however, this is a very difficult task, as
for each specimen a full-body CT scan plus a skeletal model would be necessary.

Active Appearance Models (AAMs) [7, 10, 8] offer another way of global mod-
eling. They are entirely based on given training images having annotated land-
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(a) t =0.641s (b) t =0.841s

Fig. 2. Example for possible anatomical ambiguities. (a) and (b) depict the images 641
(t = 0.641s) and 841 (t = 0.8415s) of a quail sequence, respectively. Both images seem
to show the identical pose of the walking bird. However, in the first image, the quail’s
right leg is ahead of the left leg and in the second image it is vice versa.

marks, and a global model of shape and texture is learnt automatically. The
general suitability of AAMs for the present tracking task is shown in [12], where
a proof-of-concept is given and the impact of preprocessing methods and the
choice of training images are analyzed. Further difficulties of the tracking task
at hand which are not already covered in [12] are anatomical ambiguities, es-
pecially for parts of the locomotor system. An example for this case is shown
in Fig. 2, where two approximately identical images are shown, which however
represent opposing states of a walking period. To resolve these ambiguities, ei-
ther temporal modeling or further context knowledge is necessary. Because one
goal is to keep the amount of user-interaction and hence the number of training
images small, a temporal model as described in [4] is not applicable. Instead, in
the following we analyze the suitability of using both camera views at a time to
resolve these uncertainties. For this task, we employ multi-view AAMs [15,17].

The remainder of this paper is organized as follows. In Sect. 2 we first give a
brief overview of basic AAMs and then describe the application of these models
for the current tracking task. Thereafter, we describe the adjustments presented
in [15, 17] to achieve a multi-view model. We present our experiments and results
in Sect. 3. At the end we conclude our findings and discuss future work.

2 Active Appearance Models

Active Appearance Models (AAMs) [7,10, 8] are well-known statistical models
which are used to represent the appearance of objects in digital images. In the
following, basic AAMs, their application on locomotion data and the extension
on multiple camera views are described.

2.1 Training Step

In the training step of AAMSs, the goal is to learn valid appearances of an object
based on exemplary images. As the appearance is influenced by both shape and
texture, it is necessary to model these two in a combined framework. Thus, the
training step consists of building a shape model, a texture model and a combined



4 D. Haase, J. A. Nyakatura and J. Denzler

model. The training data consist of N training images I,..., Iy and M two-
dimensional landmarks 1, = (zn1,Yn1,-- -, Tn.M, Yn,m)  for each image I,.

Modeling Shape. The goal in this step is to determine the joint movements
of the given landmarks in a statistical manner by using Principle Component
Analysis (PCA). As first step, all shapes are aligned with respect to scale,
rotation and translation. Then, the landmarks are combined into the matrix
L= —1,,...,Ix—1,), where l, = /N 3" 1, is the mean shape. The PCA
is applied on L, which gives the matrix P, of shape eigenvectors. By this means,
an arbitrary shape I’ can then be described by its shape parameters by via

U'=1,+Prby, where by =P (1'-1,). (1)

Modeling Texture. The combined variations of the gray values are analyzed in
a similar manner as in the previous step. The object textures of the images I,, are
shape-normalized to fit a common reference shape, forming the texture vectors
g, Afterwards, a PCA is applied on the matrix G = (g, —g,,---,9n — g,.);

where g, = 1/n 25:1 g,, is called the mean texture. The result are the texture
eigenvectors P, which can be used to represent an arbitrary texture g’ by its
texture parameters bg: by means of

g =g,+Pcby, where by =Pg (g —g,). 2)

Modeling Appearance. In the third sub-step, the shape parameters b; and

the texture parameters by are concatenated into a new vector ¢,, = (wb};, b;ﬂ )T
for each training image I,. Here, w € R is a scaling factor to account for
the different units of shape and intensity. Then, a final PCA is applied on
C = (ci,...,cn), which yields the matrix P¢ of appearance eigenvectors. Each
object instance with shape parameters by and texture parameters by, can then
be described by its appearance parameters ber via

¢ = (wbp,bl) = Pober, where by = P&, (3)

By restricting P¢ on the leading eigenvectors with a certain amount of the total
variance, the number of model parameters can be reduced dramatically.

2.2 Model Fitting

To fit a trained model on new data, the necessary parameter updates dc are
predicted based on the texture difference dg between model and image. For this
purpose, a linear model ¢ = Rdg is used. The coefficients R are estimated using
multivariate regression by systematically displacing the known model parameters
of the training images. For a previously unseen image, the AAM can then be
fitted by iteratively adapting the model parameters according to R and dg.
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(a) Lateral View (b) Dorsoventral View
(1) 5*" vertebra (5) pelvis (caudal) (9) left crista cnemialis
(2) furcula (wishbone) (6) pelvis (cranial) (10) right acetabulum
(8) caudal carina(rear breastbone) (7) left acetabulum (11) right femur (thighbone)
(4) pygostyle (pearson’s nose) (8) left femur (thighbone) (12) right crista cnemialis

(c) Associations between Landmarks and Anatomical Structures

Fig. 3. Overview of the anatomical landmarks used in the two camera views of the
employed quail data set.

2.3 Application on Locomotion Data

For the application of AAMs to the task of landmark tracking in locomotion
data, several issues have to be considered. A fundamental question is concerned
with the selection of training images and the resulting scope of the model. Pos-
sible options range from generic inter-species bird models over specimen-specific
models to models for each individual locomotion sequence. Due to differences
in anatomy, annotated landmarks and the experimental setup between multiple
recordings, we concentrate on sequence-based AAMs.

In this case, annotated images taken from the sequence to be analyzed are
used for training. Note that this is an important difference compared to standard
AAMs which are usually trained on a set of independent object instances (e.g. a
face database in the context of face modeling). As a consequence, the resulting
AAM becomes a basic locomotion model which expresses the dynamic variation
of the landmarks over time. An example for this effect on the quail data set (see
Fig. 3) is shown in Fig. 4. It depicts the influence of the first and second shape
parameters for a lateral and a dorsoventral AAM. It can clearly be seen that
for both models the first shape parameter governs the movement of the thigh
bones. The second parameter mainly represents the typical cervical movement
of the quail which occurs during locomotion.

Another area of concern for this application is the huge shape non-stationarity
(cf. [9]) which is induced by the movement of the landmarks during locomotion.
As at least a certain degree of shape stationarity is assumed for AAMs, currently
only the torso, the knee joint and the hip joint landmarks (see Fig. 3) are con-
sidered for automated tracking. In general, simply including the toe landmarks,
for instance, will lead to a drastically decreased tracking performance.

More details on the topics described above can be found in [12].

2.4 Multi-View Model

The extension of AAMs on multiple camera views is presented by [15,17] in the
context of medical image analysis. If we denote the number of camera views to be
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Fig. 4. Influence of the shape parameters of the lateral and dorsoventral shape models.
The arrows indicate the movement of the landmarks for positive parameter values. For
negative values, the orientation of the arrows is the other way around. The shown
landmarks are described in Fig. 3.

modeled by K, then the nt" training example consists of the images I 511), oI sLK )
and the landmarks l§}>7 .. ,I;K) in these images. As first step, the landmarks lﬁlk)
of all training examples are aligned camera-wise just like in the single-view case.
Then, all training images have to be shape-normalized, however still indepen-
dently for each camera view, yielding g;"'). The main idea is then to simply
concatenate the landmark vectors and the texture vectors of the camera views

for each training example 1 < n < N in the sense of

T T
T T T T

In this way, each training example actually consisting of multiple shapes and
textures can effectively be reduced to just one landmark vector I,, and one texture
vector g,,. The subsequent steps exactly follow those from the case of the single-
view model, and the multiple views are modeled implicitly.

3 Experiments and Results

In the following we experimentally analyze the benefits of multi-view AAMs in
comparison to single-view AAMs for the present task of anatomical landmark
tracking. As the main goal is to achieve sound tracking results at a minimum of
user interaction, the essential questions to be answered are:
— Can multi-view AAMs substantially resolve anatomical ambiguities which
can not be overcome using single-view models?

— Is areduction of the amount of training data possible with multi-view AAMs?
— How do these models perform compared to manually tracked landmarks?
To answer these questions, all experiments were conducted on a real data set
for which comprehensive ground-truth landmark positions are available. This
data set shows the locomotion of a quail from two camera views (lateral and
dorsoventral, see Figs. 1 and 3) and has a length of 2245 images (2.245 s recorded
at 1kHz). As a rescaling of the original images (1536 x 1024) to a size of 25%
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Fig. 5. Comparison of the tracking results between a single-view and a multi-view AAM
for the landmarks of the lateral camera view. Using a multi-view model, anatomical
ambiguities can be substantially resolved. As a result, the tracking quality of the knee
landmarks 8, 9, 11 and 12 is drastically improved.

does not lead to a substantial loss of tracking quality [12], all experiments were
conducted on the smaller versions for performance reasons. The evaluations,
however, were performed with respect to the original image size in any case.
Ground-truth landmark positions obtained from experts are available for 81
frames evenly spread over the entire sequence and allow a systematic evaluation.
The quantitative evaluation of the results is based on the Euclidian distance
between tracked and ground-truth landmark, which is known as point to point
error [19].

3.1 Resolving Anatomical Ambiguities

In the course of this paper we presented an example for anatomical ambiguities
which can arise in locomotion sequences (see Fig. 2). Furthermore, we stated
that these uncertainties can not be resolved using single-view AAMs and that
the application of multi-view AAMSs is inevitable. To support this hypothesis,
we trained two single-view AAMs on the lateral and dorsoventral view of the
data set and compared the results with an—in other respects identical—multi-
view AAM. For training, 15 images from one walking period at the end of the
sequence were selected. Due to the ambiguities described above, the single-view
model of the lateral view has severe problems of locating the knee landmarks
correctly and even occasionally mixes the landmarks for the left and right knee
up. The comparison of single-view and multi-view model is given in Fig. 5. It
can clearly be seen that the multi-view model drastically improves the tracking
results of the knee landmarks (8, 9, 11, 12, see Fig. 3). Small errors, as, for
instance, indicated by the 25% quartiles, are reduced observably, however, the
major enhancements are present in the larger error regions. The median error
for the right knee landmark (12) is, for instance, reduced from 20px in the
single-view case to 8 px in the multi-view case.

For the torso landmarks, however, no substantial improvement is observed.
This result can be explained by the fact that the torso landmarks usually have
a low ambiguity due to low interference with parts of the locomotor system.
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Fig. 6. Influence of the reduction of training data on single-view and multi-view AAMs.
The results are shown for (a) an exemplary knee landmark (crista cnemialis) and (b)
an exemplary torso landmark (furcula).

3.2 Reduction of the Amount of Training Data

One very important goal is to keep the human interaction spent for landmark
labeling at a minimum to allow for a large amount of data to be processed.
Therefore, the amount of training images is an important factor. However, less
training images usually cause greater uncertainties and hence greater errors dur-
ing tracking. As discussed in the last subsection, the multi-view model is capa-
ble of reducing uncertainties. For this reason, an interesting question is whether
multi-view AAMs can be used to decrease the necessary amount of training data.
To answer this question, we compared the tracking results of single-view
and multi-view AAMs with identical parameters for varying numbers of training
frames. The frames were chosen from the third walking period of the quail in the
middle of the sequence. As in the last subsection, the results vary considerably
between torso landmarks and landmarks of the locomotor system. In Figs. 6a
and 6b, example results for both cases are shown. The former depicts the case
for a knee landmark (landmark 9, left crista cnemialis, see Fig. 3). Here, it can
be seen that the errors of both the single- and the multi-view model increase as
the amount of training frames is reduced. However, the errors for the single-view
model rise much more rapidly. In the case of the torso landmark, the results
remain approximately constant for both the single- and the multi-view models.
Again, this can be explained by the low ambiguity of this kind of landmarks.
Above results indicate that multi-view models can be used to decrease the
necessary amount of training frames. While the uncertainty of the torso land-
marks can not be decreased substantially as they are not subject to anatomical
ambiguities, the uncertainty of the locomotion landmarks can be reduced.

3.3 Comparison to Manual Landmark Tracking

Tracking Time. For the multi-view model presented in Subsec. 3.1, a total
time of 38.20 min (15.21 min training, 22.99 min tracking) was required. As the
sequence has a total number of 2245 images per camera view, this corresponds
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to a time of 0.51s per image. Human experts, on the contrary, usually need at
least about 45s per image, which results in speed-up factors greater than 90.

Accuracy and Precision. To allow for a meaningful comparison between au-
tomated tracking results and manual tracking, currently a large-scale study on
the accuracy and precision of human experts is in progress. Here, four experts
are to label one and the same locomotion sequence, three times each, and inde-
pendently of one another. Unfortunately, not all results are available to date.

Yet, first comparisons between multiple labelings of two experts for the given
data set indicate that the typical human errors are in the range of about 0.5 px
(min.), 5.5 px (1% quartile), 9 px (median), 14 px (3*¢ quartile) and 40 px (max.).
Taking these preliminary results into account, we can state that the errors of
the multi-view AAM shown in Fig. 5 are in the same order of magnitude as the
manual errors.

4 Conclusions and Further Work

In this work we analyzed the benefits of multi-view Active Appearance Models
for the application of anatomical landmark tracking in biplanar x-ray locomotion
sequences. We showed that multi-view models perform substantially better than
comparable single-view models in situations of high uncertainty, e.g. for frames
with anatomical ambiguities. Furthermore, we compared single-view and multi-
view models for varying amounts of training data and demonstrated that the
latter can be used to reduce the necessary amount of user labeled training images.
Finally we stated that, based on preliminary studies, the performance of multi-
view AAMs is in the same order of magnitude as in the case of manual tracking.

An interesting point for future work is to expand the presented approach on
landmark configurations with a substantially larger non-stationarity, as for ex-
ample shapes including toe landmarks. Also, local refinement methods could be
analyzed in order to obtain an even more accurate adaptation to the anatomical
structures. The preliminary studies on the precision of manual tracking should
be continued to enable a more profound comparison to automated methods.
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