Abstract
High Dynamic Range Images provide a more detailed information and their use in Computer Vision tasks is therefore desirable. However, the illumination distribution over the image often makes this kind of images difficult to use with common vision algorithms. In particular, the highlights and shadow parts in a HDR image are difficult to analyze in a standard way. In this paper, we propose a method to solve this problem by applying a preliminary step where we precisely compute the illumination distribution in the image. Having access to the illumination distribution allows us to subtract the highlights and shadows from the original image, yielding a material color image. This material color image can be used as input for standard computer vision algorithms, like the SIFT point matching algorithm and its variants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdel-Hakim, A.E., Farag, A.A.: Csift: A sift descriptor with color invariant characteristics. In: 2006 IEEE CVPR, vol. 2, pp. 1978–1983 (2006)
Brainard, D., Freeman, W.: Bayesian color constancy. The Journal of Optical Society of America 14, 1393–1411 (1997)
Brooks, M.J., Horn, B.K.P.: Shape and Source from Shading. In: Shape from shading, pp. 53–68. MIT Press, Cambridge (1989)
Brown, M., Lowe, D.G.: Invariant features from interest point groups. In: British Machine Vision Conference, pp. 656–665 (2002)
Cui, Y., Pagani, A., Stricker, D.: Sift in perception-based color space. In: IEEE 17th International Conference on Image Processing (ICIP), pp. 3909–3912 (2010)
Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: ACM SIGGRAPH 2008, New York, NY, USA, pp. 32:1–32:10 (2008)
Debevec, P., Wenger, A., Tchou, C., Gardner, A., Waese, J., Hawkins, T.: A lighting reproduction approach to live-action compositing. ACM Trans. 21, 547–556 (2002)
Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH 1997, New York, NY, USA, pp. 369–378 (1997)
Devlin, K., Chalmers, A., Wilkie, A., Purgathofer, W.: Star: Tone reproduction and physically based spectral rendering. In: dcwp (ed.) State of the Art Reports, Eurographics 2002, pp. 101–123. The Eurographics Association (September 2002)
Farag, A., Abdel-Hakim, A.E.: Detection, categorization and recognition of road signs for autonomous navigation. In: ACIVS 2004, pp. 125–130 (2004)
Judd, D.B., Wyszecki, G.: Color in Business, Science, and Industry, New York
Krawczyk, G., Mantiuk, R., Myszkowski, K., Seidel, H.P.: Lightness perception inspired tone mapping. In: Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pp. 172–172. ACM, New York (2004)
Lalonde, J.-F., Efros, A.A., Narasimhan, S.G.: Estimating natural illumination from a single outdoor image. In: IEEE ICCV (2009)
Lensch, H.P.A., Kautz, J., Goesele, M., Heidrich, W., Seidel, H.P.: Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 234–257 (2003)
Li, Y., Lin, S., Lu, H., yeung Shum, H.: Multiple-cue illumination estimation in textured scenes. In: IEEE Proc. 9th ICCV, pp. 1366–1373 (2003)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Computer Vision, vol. 2, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Mantiuk, R., Myszkowski, K., Seidel, H.P.: A perceptual framework for contrast processing of high dynamic range images (2005)
D’Zmura, M., Lennie, P.: Mechanisms of color constancy. The Journal of Optical Society of America 3, 1662–1672 (1986)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on PAMI 27(10), 1615–1630 (2005)
Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: PROC. OF SIGGRAPH 2002, pp. 267–276. ACM Press, New York (2002)
Sato, I., Sato, Y., Katsushi, I.: Acquiring a radiance distribution to superimpose virtual objects onto a real scene (1999)
Yoo, J.D., Cho, J.H., Kim, H.M., Park, K.S., Lee, S.J., Lee, K.H.: Light source estimation using segmented hdr images. In: SIGGRAPH 2007. ACM, NY (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cui, Y., Pagani, A., Stricker, D. (2011). Robust Point Matching in HDRI through Estimation of Illumination Distribution. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-23123-0_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23122-3
Online ISBN: 978-3-642-23123-0
eBook Packages: Computer ScienceComputer Science (R0)