Skip to main content

Efficient and Robust Shape Matching for Model Based Human Motion Capture

  • Conference paper
Pattern Recognition (DAGM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6835))

Included in the following conference series:

  • 1983 Accesses

Abstract

In this paper we present a robust and efficient shape matching approach for Marker-less Motion Capture. Extracted features such as contour, gradient orientations and the turning function of the shape are embedded in a 1-D string. We formulate shape matching as a Linear Assignment Problem and propose to use Dynamic Time Warping on the string representation of shapes to discard unlikely correspondences and thereby to reduce ambiguities and spurious local minima. Furthermore, the proposed cost matrix pruning results in robustness to scaling, rotation and topological changes and allows to greatly reduce the computational cost. We show that our approach can track fast human motions where standard articulated Iterative Closest Point algorithms fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamek, T., O’Connor, N.: Efficient contour-based shape representation and matching, pp. 138–143. MIR (2003)

    Google Scholar 

  2. Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. TPAMI 28(1), 44–58 (2006)

    Article  Google Scholar 

  3. Bo, L., Sminchisescu, C.: Twin gaussian processes for structured prediction. International Journal of Computer Vision (2010)

    Google Scholar 

  4. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. IJCV 56(3), 179–194 (2004)

    Article  Google Scholar 

  5. Bronstein, A., Bronstein, M., Bronstein, M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer-Verlag New York Inc., Secaucus (2008)

    MATH  Google Scholar 

  6. Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern Recognition 26(12), 1797–1812 (1993)

    Article  Google Scholar 

  7. Corazza, S., MĂĽndermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. IJCV 87(1), 156–169 (2010)

    Article  Google Scholar 

  8. Demirdjian, D.: Combining geometric-and view-based approaches for articulated pose estimation, pp. 183–194 (2004)

    Google Scholar 

  9. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61(2), 185–205 (2005)

    Article  Google Scholar 

  10. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion capture. IJCV 87, 75–92 (2010)

    Article  Google Scholar 

  11. Hofmann, M., Gavrila, D.: Multi-view 3d human pose estimation combining single-frame recovery, temporal integration and model adaptation. In: CVPR, pp. 2214–2221 (2009)

    Google Scholar 

  12. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, C., Elgammal, A.: Coupled visual and kinematic manifold models for tracking. IJCV (2010)

    Google Scholar 

  14. Marzal, A., Palazón, V.: Dynamic time warping of cyclic strings for shape matching. In: ICAPR, pp. 644–652 (2005)

    Google Scholar 

  15. Mori, G., Malik, J.: Recovering 3d human body configurations using shape contexts. TPAMI, 1052–1062 (2006)

    Google Scholar 

  16. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)

    MATH  Google Scholar 

  17. Pons-Moll, G., Baak, A., Helten, T., Müller, M., Seidel, H.P., Rosenhahn, B.: Multisensor-fusion for 3D full-body human motion capture. In: CVPR, pp. 663–670 (2010)

    Google Scholar 

  18. Pons-Moll, G., Rosenhahn, B.: Ball joints for marker-less human motion capture. In: WACV, pp. 1–8 (2009)

    Google Scholar 

  19. Rosenhahn, B., Brox, T.: Scaled motion dynamics for markerless motion capture. In: CVPR (2007)

    Google Scholar 

  20. Salzmann, M., Urtasun, R.: Combining discriminative and generative methods for 3d deformable surface and articulated pose reconstruction. In: CVPR (June 2010)

    Google Scholar 

  21. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: ICCV, pp. 750–757 (2003)

    Google Scholar 

  22. Sidenbladh, H., Black, M., Fleet, D.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Sigal, L., Balan, L., Black, M.: Combined discriminative and generative articulated pose and non-rigid shape estimation. In: NIPS, pp. 1337–1344 (2008)

    Google Scholar 

  24. Sminchisescu, C.: Consistency and coupling in human model likelihoods. In: FG (2002)

    Google Scholar 

  25. Sminchisescu, C., Triggs, B.: Covariance scaled sampling for monocular 3D body tracking. In: CVPR, vol. 1 (2001)

    Google Scholar 

  26. Urtasun, R., Fleet, D.J., Fua, P.: 3D people tracking with gaussian process dynamical models. In: CVPR, vol. 1, pp. 238–245 (2006)

    Google Scholar 

  27. Veltkamp, R., Hagedoorn, M.: State of the art in shape matching. Principles of visual information retrieval 87 (2001)

    Google Scholar 

  28. Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, X., Liu, Y.: Generative estimation of 3D human pose using shape contexts matching. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 419–429. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B. (2011). Efficient and Robust Shape Matching for Model Based Human Motion Capture. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23123-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23122-3

  • Online ISBN: 978-3-642-23123-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics