Abstract
In this paper we present a robust and efficient shape matching approach for Marker-less Motion Capture. Extracted features such as contour, gradient orientations and the turning function of the shape are embedded in a 1-D string. We formulate shape matching as a Linear Assignment Problem and propose to use Dynamic Time Warping on the string representation of shapes to discard unlikely correspondences and thereby to reduce ambiguities and spurious local minima. Furthermore, the proposed cost matrix pruning results in robustness to scaling, rotation and topological changes and allows to greatly reduce the computational cost. We show that our approach can track fast human motions where standard articulated Iterative Closest Point algorithms fail.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamek, T., O’Connor, N.: Efficient contour-based shape representation and matching, pp. 138–143. MIR (2003)
Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. TPAMI 28(1), 44–58 (2006)
Bo, L., Sminchisescu, C.: Twin gaussian processes for structured prediction. International Journal of Computer Vision (2010)
Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. IJCV 56(3), 179–194 (2004)
Bronstein, A., Bronstein, M., Bronstein, M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer-Verlag New York Inc., Secaucus (2008)
Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern Recognition 26(12), 1797–1812 (1993)
Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. IJCV 87(1), 156–169 (2010)
Demirdjian, D.: Combining geometric-and view-based approaches for articulated pose estimation, pp. 183–194 (2004)
Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61(2), 185–205 (2005)
Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion capture. IJCV 87, 75–92 (2010)
Hofmann, M., Gavrila, D.: Multi-view 3d human pose estimation combining single-frame recovery, temporal integration and model adaptation. In: CVPR, pp. 2214–2221 (2009)
Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987)
Lee, C., Elgammal, A.: Coupled visual and kinematic manifold models for tracking. IJCV (2010)
Marzal, A., Palazón, V.: Dynamic time warping of cyclic strings for shape matching. In: ICAPR, pp. 644–652 (2005)
Mori, G., Malik, J.: Recovering 3d human body configurations using shape contexts. TPAMI, 1052–1062 (2006)
Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)
Pons-Moll, G., Baak, A., Helten, T., Müller, M., Seidel, H.P., Rosenhahn, B.: Multisensor-fusion for 3D full-body human motion capture. In: CVPR, pp. 663–670 (2010)
Pons-Moll, G., Rosenhahn, B.: Ball joints for marker-less human motion capture. In: WACV, pp. 1–8 (2009)
Rosenhahn, B., Brox, T.: Scaled motion dynamics for markerless motion capture. In: CVPR (2007)
Salzmann, M., Urtasun, R.: Combining discriminative and generative methods for 3d deformable surface and articulated pose reconstruction. In: CVPR (June 2010)
Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: ICCV, pp. 750–757 (2003)
Sidenbladh, H., Black, M., Fleet, D.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)
Sigal, L., Balan, L., Black, M.: Combined discriminative and generative articulated pose and non-rigid shape estimation. In: NIPS, pp. 1337–1344 (2008)
Sminchisescu, C.: Consistency and coupling in human model likelihoods. In: FG (2002)
Sminchisescu, C., Triggs, B.: Covariance scaled sampling for monocular 3D body tracking. In: CVPR, vol. 1 (2001)
Urtasun, R., Fleet, D.J., Fua, P.: 3D people tracking with gaussian process dynamical models. In: CVPR, vol. 1, pp. 238–245 (2006)
Veltkamp, R., Hagedoorn, M.: State of the art in shape matching. Principles of visual information retrieval 87 (2001)
Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. J. ACM 21(1), 168–173 (1974)
Zhao, X., Liu, Y.: Generative estimation of 3D human pose using shape contexts matching. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 419–429. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B. (2011). Efficient and Robust Shape Matching for Model Based Human Motion Capture. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-23123-0_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23122-3
Online ISBN: 978-3-642-23123-0
eBook Packages: Computer ScienceComputer Science (R0)