Skip to main content

High Performance Computing of MSSG with Ultra High Resolution

  • Conference paper
Parallel Computing Technologies (PaCT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6873))

Included in the following conference series:

  • 965 Accesses

Abstract

Multi-Scale Simulator for the Geoenvironment (MSSG), which is a coupled non-hydrostatic atmosphere-ocean-land model, has been developed in the Earth simulator Center. Outline of MSSG is introduced and its characteristics are presented. In MSSG, Yin-Yang grid system is adopted in order to relax Courant-Friedrichs-Lewy condition on the sphere. Furthermore, the Large-Eddy Simulation model for the turbulent atmospheric boundary layer and cloud micro physics model have been adapted for ultra high resolution simulations of weather/climate system. MSSG was optimized computationally on the Earth Simulator and its dynamical core processes had attained 51.5 Tflops on the Earth Simulator. Results from preliminary validations including forecasting experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Satomura, T., Akiba, S.: Development of high- precision nonhydrostatic atmospheric model (1): Governing equations. Annuals of Disas. Prev. Res. Inst., 331–336 (2003)

    Google Scholar 

  2. Lilly, D.K.: On the numerical simulation of buoyant convection. Tellus 14, 148–172 (1962)

    Article  Google Scholar 

  3. Smagorinsky, J., Manabe, S., Holloway Jr., J.L.: Numerical results from a nine level general circulation model of the atmosphere. Monthly Weather Review 93, 727–768 (1965)

    Article  Google Scholar 

  4. Zhang, D., Anthes, R.A.: A High-Resolution Model of the Planetary Boundary Layer - Sensitivity Tests and Comparisons with SESAME-79 Data. Journal of Applied Meteorology 21, 1594–1609 (1982)

    Article  Google Scholar 

  5. Blackadar, A.K.: High resolution models of the planetary boundary layer. In: Pfafflin, Ziegler (eds.) Advances in Environmental Science and Engineering, vol. 1, pp. 50–85. Gordon and Breach Publ. Group, Newark (1979)

    Google Scholar 

  6. Reisner, J., Ramussen, R.J., Bruintjes, R.T.: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc (1998)

    Google Scholar 

  7. Kain, J.S., Fritsch, J.M.: Convective parameterization for mesoscale models: The Kain-Fritsch Scheme. The Representation of Cumulus Convection in Numerical Models of the Atmosphre, Meteor. Monogr. 46, 165–170 (1993)

    Google Scholar 

  8. Fritsch, J.M., Chappell, C.F.: Numerical prediction of convectively driven mesoscale pressure systems, Part I: Convective parameterization. J. Atmos. Sci. 37, 1722–1733 (1980)

    Article  Google Scholar 

  9. Davies, H.C.: A lateral boundary formulation for multi-level prediction models. Quart. J. R. Met. Soc. 102, 405–418 (1976)

    Google Scholar 

  10. Marshall, J., Hill, C., Perelman, L., Adcroft, A.: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research 102, 5733–5752 (1997)

    Article  Google Scholar 

  11. Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102, 5753–5766 (1997)

    Article  Google Scholar 

  12. Gill, A.: Atmosphere-Ocean dynamics. Academic Press Inc., London (1982)

    Google Scholar 

  13. Mellor, G.L., Yamada, T.: A hierarchy of turbulence closure models for planetary boundary layers. Journal of Atmospheric Sciences 31, 1791–1806 (1974)

    Article  Google Scholar 

  14. Kageyama, A., Sato, T.: The ”Yin-Yang Grid”: An Overset Grid in Spherical Geometry. Geochem. Geophys. Geosyst. 5, 9005 (2004), doi:10.1029/2004GC000734

    Article  Google Scholar 

  15. Gal-Chen, T., Somerville, R.C.J.: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. Journal of Computational Physics 17, 209–228 (1975)

    Article  MATH  Google Scholar 

  16. Peng, X., Xiao, F., Takahashi, K., Yabe, T.: CIP transport in meteorological models. JSME international Journal (Series B) 47(4), 725–734 (2004)

    Article  Google Scholar 

  17. Wicker, L.J., Skamarock, W.C.: Time-splitting methods for elastic models using forward time schemes. Monthly Weather Review 130, 2088–2097 (2002)

    Article  Google Scholar 

  18. Komine, K.: Validation Results from Non-hydrostatic Atmospheric Simulations. In: 2005 SIAM Conference on Computational Science and Engineering, Florida, USA (Febuary 2005)

    Google Scholar 

  19. Ohdaira, M., Takahashi, K., Watanabe, K.: Validation for the Solution of Shallow Water Equations in Spherical Geometry with Overset Grid System. In: Spherical Geometry. The 2004 Workshop on the Solution of Partial Differential Equations on the Sphere, Yokohama, p. 71 (July 2004)

    Google Scholar 

  20. Takahashi, K., et al.: Proc. 7th International Conference on High Performance Computing and Grid in Asia Pacific Region, p. 487 (2004)

    Google Scholar 

  21. Takahashi, K. et al.: Non-Hydrostatic Atmospheric GCM Development and its computational performance, http://www.ecmwf.int/newsevents/meetings/workshops/2004/high_performance_computing-11th/presentations.html

  22. Stuben, K.: A Review of Algebraic Multigrid, GMD Report 96 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takahashi, K. et al. (2011). High Performance Computing of MSSG with Ultra High Resolution. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2011. Lecture Notes in Computer Science, vol 6873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23178-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23178-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23177-3

  • Online ISBN: 978-3-642-23178-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics