Abstract
Two electrical engineering applications from industry partners dealing with sparse matrices were analyzed regarding cache efficiency and scalability on modern multi core systems. Two different contemporary multi-core architectures have been investigated, namely Intel’s Westmere and AMD’s Magny-Cours. This paper can be regarded as a continuation of the investigations presented in [14] and [15].
In addition, the SuiteSparseQR library for efficiently computing QR factorizations of sparse matrices was evaluated regarding scalability and cache efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
OpenMP: The OpenMP API specification for parallel programming, http://www.openmp.org
Perf Wiki, https://perf.wiki.kernel.org
SuiteSparse: a Suite of Sparse matrix packages, http://www.cise.ufl.edu/research/sparse/SuiteSparse/
SuiteSparseQR: multithreaded multifrontal sparse QR factorization, http://www.cise.ufl.edu/research/sparse/SPQR/
AMD: AMD Core Math Library, http://www.amd.com/acml/
Amdahl, G.: Validity of the single processor approach to achieving large-scale computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967), http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
Amestoy, P.R., Duff, I.S., Puglisi, C.: Multifrontal qr factorization in a multiprocessor environment. Numerical Linear Algebra with Applications 3(4), 275–300 (1996), http://dx.doi.org/10.1002/SICI1099-150199607/083:4275::AID-NLA833.0.CO2-7
Intel: Intel 64 and IA-32 Architectures Software Developers Manual; Volume 3B: System Programming Guide, Part 2, http://www.intel.com/Assets/PDF/manual/253669.pdf
Intel: Math Kernel Library, http://software.intel.com/en-us/articles/intel-mkl/
Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin automated optimization of thread-to-core pinning on multicore systems. In: Stenström, P. (ed.) Transactions on High-Performance Embedded Architectures and Compilers III. LNCS, vol. 6590, pp. 219–235. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-19448-1_12
Liu, J.W.H.: The multifrontal method for sparse matrix solution: Theory and practice. SIAM Review 34(1), 82–109 (1992), http://link.aip.org/link/?SIR/34/82/1
Matstoms, P.: Sparse linear least squares problems in optimization. Computational Optimization and Applications 7, 89–110 (1997), http://dx.doi.org/10.1023/A:1008680131271
Tinney, W., Brandwajn, V., Chan, S.: Sparse vector methods. IEEE Transactions on Power Apparatus and Systems PAS 104(2), 295–301 (1985)
Trinitis, C., Küstner, T., Weidendorfer, J., Smajic, J.: Sparse matrix operations on multi-core architectures. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 41–48. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03275-2_5
Trinitis, C., Küstner, T., Weidendorfer, J., Smajic, J.: Sparse matrix operations on several multi-core architectures. The Journal of Supercomputing, 1–9 (2010), http://dx.doi.org/10.1007/s11227-010-0428-9
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, T., Trinitis, C., Smajic, J. (2011). Cache Efficiency and Scalability on Multi-core Architectures. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2011. Lecture Notes in Computer Science, vol 6873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23178-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-23178-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23177-3
Online ISBN: 978-3-642-23178-0
eBook Packages: Computer ScienceComputer Science (R0)