Skip to main content

Surveillance of Unmanned Aerial Vehicles Using Probability Collectives

  • Conference paper
Holonic and Multi-Agent Systems for Manufacturing (HoloMAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6867))

Abstract

A rising deployment of unmanned aerial vehicles in complex environment operations requires advanced coordination and planning methods. We address the problem of multi-UAV-based area surveillance and collision avoidance. The surveillance problem contains non-linear components and non-linear constraints which makes the optimization problem a hard one. We propose discretization of the problem based on the definition of the points of interest and time steps to reduce its complexity. The objective function integrates both the area surveillance and collision avoidance sub-problems. The optimization task is solved using a probability collection solver that allows to distribute computation of the optimization. We have implemented the probability collective solver as a multi-agent simulation. The results show the approach can be used for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Yam, Y.: Dynamics of Complex Systems. Perseus Books, Cambridge (1997)

    MATH  Google Scholar 

  2. Bieniawski, S.R.: Distributed optimization and flight control using collectives. Dissertation Stanford University (2005)

    Google Scholar 

  3. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, NY (2003)

    Book  Google Scholar 

  4. Caffarelli, L., Crespi, V., Cybenko, G., Gamba, I., Rus, D.: Stochastic Distributed Algorithms for Target Surveillance. Intelligent Systems Design and Applications, 137 (2003)

    Google Scholar 

  5. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics (79), 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  8. Lee, C.F., Wolpert, D.H.: Product distribution theory for control of multi-agent systems. In: AAMAS 2004: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 522–529. IEEE Computer Society, Washington, DC, USA (2004)

    Google Scholar 

  9. MacKay, D.: Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  10. Metropolis, N., Ulam, S.: The monte carlo method. Journal of the American Statistical Association 44(247), 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nigam, N., Kroo, I.: Persistent Surveillance Using Multiple Unmanned Air Vehicles. In: 2008 IEEE Aerospace Conference, pp. 1–14 (2008)

    Google Scholar 

  12. Savla, K.: Multi UAV Systems with Motion and Communication Constraints. PhD thesis, University of California (2007)

    Google Scholar 

  13. Schutte, J., Greonwold, A.: Optimal sizing design of truss structures using the particle swarm optimization algorithm. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp. 2002–5639. AIAA (September 2002)

    Google Scholar 

  14. Vollmer, H.: Computational complexity of constraint satisfaction. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 748–757. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Wolpert, D.H.: Information theory – the bridge connecting bounded rational game theory and statistical physics. In: Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) Complex Engineered Systems, pp. 262–290. Springer, Berlin (2006)

    Chapter  Google Scholar 

  16. Wolpert, D.H., Bieniawski, S.: Distributed control by lagrangian steepest descent. In: 43th IEEE Conference on Decision and Control (December 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Volf, P., Šišlák, D., Pavlíček, D., Pěchouček, M. (2011). Surveillance of Unmanned Aerial Vehicles Using Probability Collectives. In: Mařík, V., Vrba, P., Leitão, P. (eds) Holonic and Multi-Agent Systems for Manufacturing. HoloMAS 2011. Lecture Notes in Computer Science(), vol 6867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23181-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23181-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23180-3

  • Online ISBN: 978-3-642-23181-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics